Sixth-order symmetric and symplectic exponentially fitted modified Runge-Kutta methods of Gauss type
暂无分享,去创建一个
Manuel Calvo | Juan I. Montijano | Luis Rández | J. M. Franco | J. I. Montijano | M. Calvo | L. Rández
[1] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[2] J. M. Franco. An embedded pair of exponentially fitted explicit Runge-Kutta methods , 2002 .
[3] J. M. Sanz-Serna,et al. Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.
[4] Kazufumi Ozawa. A functionally fitted three-stage explicit singly diagonally implicit Runge-Kutta method , 2005 .
[5] H. De Meyer,et al. Exponentially fitted Runge-Kutta methods , 2000 .
[6] J. M. Franco. Exponentially fitted explicit Runge-Kutta-Nyström methods , 2004 .
[7] John P. Coleman,et al. Mixed collocation methods for y ′′ =f x,y , 2000 .
[8] T. E. Simos,et al. Exponentially fitted symplectic integrator. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[9] H. De Meyer,et al. Frequency determination and step-length control for exponentially-fitted Runge---Kutta methods , 2001 .
[10] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[11] W. Gautschi. Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .
[12] H. De Meyer,et al. Exponentially-fitted explicit Runge–Kutta methods , 1999 .
[13] Beatrice Paternoster,et al. Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .
[14] J. M. Franco. Runge-Kutta methods adapted to the numerical integration of oscillatory problems , 2004 .
[15] Jesús Vigo-Aguiar,et al. AN ADAPTED SYMPLECTIC INTEGRATOR FOR HAMILTONIAN PROBLEMS , 2001 .
[16] Manuel Calvo,et al. Structure preservation of exponentially fitted Runge-Kutta methods , 2008 .
[17] Wilson C. K. Poon,et al. Phase behavior and crystallization kinetics of PHSA-coated PMMA colloids , 2003 .
[18] Kazufumi Ozawa,et al. A functional fitting Runge-Kutta method with variable coefficients , 2001 .
[19] Hans Van de Vyver. A fourth-order symplectic exponentially fitted integrator , 2006, Comput. Phys. Commun..
[20] Manuel Calvo,et al. Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type , 2009 .
[21] G. Vanden Berghe,et al. Exponential fitted Runge--Kutta methods of collocation type: fixed or variable knot points? , 2003 .
[22] D. G. Bettis. Runge-Kutta algorithms for oscillatory problems , 1979 .
[23] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[24] T. E. Simos,et al. An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .