Physics design of the national spherical torus experiment

The mission of the National Spherical Torus Experiment (NSTX) is to prove the principles of spherical torus physics by producing high-beta toroidal plasmas that are non-inductively sustained, and whose current profiles are in steady-state. NSTX will be one of the first ultra low a[P(input) up to 11 MW] in order to produce high-beta toroidal (25 to 40%), low collisionality, high bootstrap fraction (less than or equal to 70%) discharges. Both radio-frequency (RF) and neutral-beam (NB) heating and current drive will be employed. Built into NSTX is sufficient configurational flexibility to study a range of operating space and the resulting dependences of the confinement, micro- and MHD stability, and particle and power handling properties. NSTX research will be carried out by a nationally based science team.

[1]  Dennis J Strickler,et al.  Features of spherical torus plasmas , 1986 .

[2]  J. E. RICE,et al.  Observations of central toroidal rotation in ICRF heated Alcator C-Mod plasmas , 1998 .

[3]  B. Braams Radiative Divertor Modelling for ITER and TPX , 1996 .

[4]  Charles F. F. Karney,et al.  Approximate formula for radiofrequency current drive efficiency with magnetic trapping , 1991 .

[5]  O. Naito,et al.  ITER L mode confinement database , 1997 .

[6]  D. N. Hill,et al.  The role of neutrals in the H–L back transition of high density single-null and double-null gas-fueled discharges in DIII-D , 1998 .

[7]  C. Roach,et al.  High-performance discharges in the Small Tight Aspect Ratio Tokamak (START) , 1998 .

[8]  Erwin Frederick Jaeger,et al.  Influence of various physics phenomena on fast wave current drive in tokamaks , 1993 .

[11]  J. Manickam,et al.  Ideal MHD stability limits of low aspect ratio tokamak plasmas , 1997 .

[12]  J. Manickam,et al.  Role of the stabilizing shell in high- beta , low-q disruptions in PBX-M , 1996 .

[13]  J. Manickam,et al.  Characteristics of low-q disruptions in PBX , 1988 .

[14]  M. Mauel,et al.  Active control of 2/1 magnetic islands in a tokamak , 1998 .

[15]  David Mikkelsen,et al.  Current relaxation time scales in toroidal plasmas , 1989 .

[16]  K. Borrass,et al.  Disruptive tokamak density limit as scrape-off layer/divertor phenomenon , 1991 .

[17]  Neil Pomphrey,et al.  TSC simulation of Ohmic discharges in TFTR , 1993 .

[18]  O. J. W. F. Kardaun,et al.  Analysis of the ITER H-mode confinement database , 1993 .

[19]  D. N. Hill,et al.  Very high‐ and high‐confinement mode limited discharges in DIII‐D , 1996 .

[20]  D. J. Hoffman,et al.  THREE DIMENSIONAL MODELLING OF ICRF LAUNCHERS FOR FUSION DEVICES , 1996 .

[21]  K. Lackner,et al.  Tokamak Confinement in Relation to Plateau Scaling , 1990 .

[22]  J. Cordey,et al.  Results from the ITER H-mode threshold database , 1996 .

[23]  W. M. Tang Microinstability-based model for anomalous thermal confinement in tokamaks , 1986 .

[24]  S. Jardin,et al.  Dynamic modeling of transport and positional control of tokamaks , 1986 .

[25]  High harmonic fast waves in high beta plasmas , 1995 .

[26]  F. Hofmann,et al.  Pressure and inductance effects on vertical stability of shaped tokamaks , 1993 .

[27]  K. H. Burrell,et al.  Flow shear induced fluctuation suppression in finite aspect ratio shaped tokamak plasma , 1995 .

[28]  R. Galvão,et al.  «Natural elongation» of spherical tokamaks , 1992 .