Dispersion-managed mode locking

The pulse shape and spectrum of ultrashort-pulse Ti:sapphire mode-locked lasers are explained by a model akin to dispersion-managed pulse propagation of optical communications. The pulse is characterized as a nonlinear Bloch wave in a periodic structure. The ultimate spectral width is limited by dispersion and mirror bandwidth and less strongly by gain filtering. The main role of Kerr-lens mode locking is to provide stability against noise buildup. One-dimensional computer simulations are sufficient to explain the major pulse-shaping dynamics. Results are compared with experiment.

[1]  H. Haus,et al.  Dispersion-managed solitons as nonlinear Bloch waves , 1999 .

[2]  J G Fujimoto,et al.  Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. , 1999, Optics letters.

[3]  H. Haus,et al.  Dispersion-managed solitons in the net positive dispersion regime , 1999 .

[4]  I. Christov,et al.  Kerr-lens mode-locked laser model: role of space–time effects , 1998 .

[5]  Ursula Keller,et al.  Theory of double-chirped mirrors , 1998 .

[6]  Ursula Keller,et al.  Mode-locking with slow and fast saturable absorbers-what's the difference? , 1998 .

[7]  J. Herrmann,et al.  Spatiotemporal model of femtosecond pulse generation in Kerr-lens mode-locked solid-state lasers , 1998 .

[8]  F. M. Knox,et al.  Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion , 1997 .

[9]  F. Kärtner,et al.  Self-starting 6.5-fs pulses from a Ti:sapphire laser. , 1997, Optics letters.

[10]  H. Haus,et al.  Design and fabrication of double-chirped mirrors. , 1997, Optics letters.

[11]  M M Murnane,et al.  Sub-10-fs operation of Kerr-lens mode-locked lasers. , 1996, Optics letters.

[12]  R. Szipöcs,et al.  Ultrabroadband ring oscillator for sub-10-fs pulse generation. , 1996, Optics letters.

[13]  H. Haus,et al.  Frequency-dependent mode size in broadband Kerr-lens mode locking. , 1996, Optics letters.

[14]  I. Christov,et al.  Space-time focusing of femtosecond pulses in a Ti:sapphire laser. , 1995, Optics letters.

[15]  Theo T. Tschudi,et al.  Reduction of absorption losses in ion beam sputter deposition of optical coatings for the visible and near infrared , 1994, Other Conferences.

[16]  Theo T. Tschudi,et al.  Direct optical monitoring instrument with a double detection system for the control of multilayer systems from the visible to the near infrared , 1994, Other Conferences.

[17]  I. Christov,et al.  Fourth-order dispersion-limited solitary pulses. , 1994, Optics letters.

[18]  I. Christov,et al.  Pulse evolution in a broad-bandwidth Ti:sapphire laser. , 1994, Optics letters.

[19]  F. Krausz,et al.  Ultrabroadband femtosecond lasers , 1994 .

[20]  Erich P. Ippen,et al.  Principles of passive mode locking , 1994 .

[21]  J R Taylor,et al.  Generation of femtosecond soliton pulses by passive mode locking of an ytterbium-erbium figure-of-eight fiber laser. , 1993, Optics letters.

[22]  J. R. Taylor,et al.  Characterstic instability of fibre loop soliton lasers , 1992 .

[23]  J. Fujimoto,et al.  Structures for additive pulse mode locking , 1991 .

[24]  K. Smith,et al.  Totally integrated erbium fibre soliton laser pumped by laser diode , 1991 .

[25]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[26]  D W Hall,et al.  Mode-locked erbium-doped fiber laser with soliton pulse shaping. , 1989, Optics letters.

[27]  James P. Gordon,et al.  Theory of passively mode-locked lasers for the case of a nonlinear complex-propagation coefficient , 1985 .

[28]  R. Stolen,et al.  The soliton laser. , 1984, Optics letters.

[29]  H. Haus Theory of mode locking with a fast saturable absorber , 1975 .