Ribbon synapses compute temporal contrast and encode luminance in retinal rod bipolar cells

Contrast is computed throughout the nervous system to encode changing inputs efficiently. The retina encodes luminance and contrast over a wide range of visual conditions and must adapt its responses to maintain sensitivity and to avoid saturation. We examined the means by which one type of adaptation allows individual synapses to compute contrast and encode luminance in biphasic responses to step changes in light levels. Light-evoked depletion of the readily releasable vesicle pool (RRP) at rod bipolar cell ribbon synapses in rat retina limited the dynamic range available to encode transient, but not sustained, responses, thereby allowing the transient and sustained components of release to compute temporal contrast and encode mean light levels, respectively. A release/replenishment model revealed that a single, homogeneous pool of synaptic vesicles is sufficient to generate this behavior and that a partial depletion of the RRP is the dominant mechanism for shaping the biphasic contrast/luminance response.

[1]  F. Rieke,et al.  Voltage-Gated Na Channels in AII Amacrine Cells Accelerate Scotopic Light Responses Mediated by the Rod Bipolar Cell Pathway , 2010, The Journal of Neuroscience.

[2]  Robert G. Smith,et al.  Postsynaptic calcium feedback between rods and rod bipolar cells in the mouse retina , 2004, Visual Neuroscience.

[3]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[4]  Takeshi Sakaba,et al.  The Coupling between Synaptic Vesicles and Ca2+ Channels Determines Fast Neurotransmitter Release , 2007, Neuron.

[5]  H. V. Gersdorff,et al.  Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals , 1994, Nature.

[6]  F. Rieke,et al.  Controlling the Gain of Rod-Mediated Signals in the Mammalian Retina , 2006, The Journal of Neuroscience.

[7]  Mark S. Cembrowski,et al.  A Synaptic Mechanism for Retinal Adaptation to Luminance and Contrast , 2011, The Journal of Neuroscience.

[8]  S. Nawy,et al.  Switching between transient and sustained signalling at the rod bipolar‐AII amacrine cell synapse of the mouse retina , 2009, The Journal of physiology.

[9]  T. Südhof,et al.  A dual-Ca2+-sensor model for neurotransmitter release in a central synapse , 2007, Nature.

[10]  F. Werblin,et al.  Control of Retinal Sensitivity: I. Light and Dark Adaptation of Vertebrate Rods and Cones , 1974 .

[11]  Takeshi Sakaba,et al.  Multiple Roles of Calcium Ions in the Regulation of Neurotransmitter Release , 2008, Neuron.

[12]  L. Lagnado,et al.  Expansion of calcium microdomains regulates fast exocytosis at a ribbon synapse. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Hudspeth,et al.  Transfer characteristics of the hair cell's afferent synapse. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. G. Green,et al.  The search for the site of visual adaptation , 1986, Vision Research.

[15]  V. Shahrezaei,et al.  Competition between Phasic and Asynchronous Release for Recovered Synaptic Vesicles at Developing Hippocampal Autaptic Synapses , 2022 .

[16]  Y. Goda,et al.  Two components of transmitter release at a central synapse. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[17]  G. Matthews,et al.  Depletion and Replenishment of Vesicle Pools at a Ribbon-Type Synaptic Terminal , 1997, The Journal of Neuroscience.

[18]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[19]  Fred Rieke,et al.  Review the Challenges Natural Images Pose for Visual Adaptation , 2022 .

[20]  S. Bloomfield,et al.  Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina , 1999, Visual Neuroscience.

[21]  F. Rieke,et al.  Single-Photon Absorptions Evoke Synaptic Depression in the Retina to Extend the Operational Range of Rod Vision , 2008, Neuron.

[22]  E. Neher,et al.  Quantitative Relationship between Transmitter Release and Calcium Current at the Calyx of Held Synapse , 2001, The Journal of Neuroscience.

[23]  N. Vardi,et al.  Coordinated multivesicular release at a mammalian ribbon synapse , 2004, Nature Neuroscience.

[24]  J. Diamond,et al.  Sustained Ca2+ Entry Elicits Transient Postsynaptic Currents at a Retinal Ribbon Synapse , 2003, The Journal of Neuroscience.

[25]  F. Werblin,et al.  I. Light and Dark Adaptation of Vertebrate Rods and Cones , 1974 .

[26]  D. Baylor,et al.  Electrical responses of single cones in the retina of the turtle , 1970, The Journal of physiology.

[27]  Stefan Hefft,et al.  Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse , 2005, Nature Neuroscience.

[28]  R. M. Boynton,et al.  Visual Adaptation in Monkey Cones: Recordings of Late Receptor Potentials , 1970, Science.

[29]  L. Trussell,et al.  Inhibitory Transmission Mediated by Asynchronous Transmitter Release , 2000, Neuron.

[30]  V. Mountcastle,et al.  NEURAL ACTIVITY IN MECHANORECEPTIVE CUTANEOUS AFFERENTS: STIMULUS-RESPONSE RELATIONS, WEBER FUNCTIONS, AND INFORMATION TRANSMISSION. , 1965, Journal of neurophysiology.

[31]  J. H. Peters,et al.  Primary Afferent Activation of Thermosensitive TRPV1 Triggers Asynchronous Glutamate Release at Central Neurons , 2010, Neuron.

[32]  T. Jarsky,et al.  Nanodomain Control of Exocytosis Is Responsible for the Signaling Capability of a Retinal Ribbon Synapse , 2010, The Journal of Neuroscience.

[33]  Wei Li,et al.  Simultaneous contribution of two rod pathways to AII amacrine and cone bipolar cell light responses. , 2005, Journal of neurophysiology.

[34]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[35]  D. Saint,et al.  The relation between transmitter release and ca2+ entry at the mouse motor nerve terminal: Role of stochastic factors causing heterogeneity , 1992, Neuroscience.

[36]  G. Matthews,et al.  Ultrafast Exocytosis Elicited by Calcium Current in Synaptic Terminals of Retinal Bipolar Neurons , 1996, Neuron.

[37]  B. Sakmann,et al.  Calcium influx and transmitter release in a fast CNS synapse , 1996, Nature.

[38]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[39]  Edward H. Adelson,et al.  Saturation and adaptation in the rod system , 1982, Vision Research.

[40]  Skyler L Jackman,et al.  Role of the synaptic ribbon in transmitting the cone light response , 2009, Nature Neuroscience.

[41]  D. Baylor,et al.  An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R H Masland,et al.  Light-evoked responses of bipolar cells in a mammalian retina. , 2000, Journal of neurophysiology.

[43]  Zhiping P Pang,et al.  Cell biology of Ca2+-triggered exocytosis. , 2010, Current opinion in cell biology.

[44]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[45]  J. Diamond,et al.  Vesicle depletion and synaptic depression at a mammalian ribbon synapse. , 2006, Journal of neurophysiology.

[46]  F. Rieke,et al.  Nonlinear Signal Transfer from Mouse Rods to Bipolar Cells and Implications for Visual Sensitivity , 2002, Neuron.

[47]  K. Naka,et al.  S‐potentials from luminosity units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[48]  W. Regehr,et al.  Delayed Release of Neurotransmitter from Cerebellar Granule Cells , 1998, The Journal of Neuroscience.

[49]  L. Lagnado,et al.  Endogenous Calcium Buffers Regulate Fast Exocytosis in the Synaptic Terminal of Retinal Bipolar Cells , 2002, Neuron.

[50]  Ji-Jie Pang,et al.  Light‐evoked current responses in rod bipolar cells, cone depolarizing bipolar cells and AII amacrine cells in dark‐adapted mouse retina , 2004, The Journal of physiology.