Confidence assessment for spectral estimation based on estimated covariances
暂无分享,去创建一个
[1] J. Manyika. Big data: The next frontier for innovation, competition, and productivity , 2011 .
[2] R. Couillet,et al. Random Matrix Methods for Wireless Communications: Estimation , 2011 .
[3] Jian Li,et al. Computationally efficient maximum-likelihood estimation of structured covariance matrices , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).
[4] JOHAN KARLSSON. INPUT-TO-STATE COVARIANCES FOR SPECTRAL ANALYSIS : THE BIASED ESTIMATE , 2012 .
[5] Stephen W. Lang,et al. Confidence regions for spectral bounds , 1984, ICASSP.
[6] Arthur B. Baggeroer,et al. Confidence intervals for regression (MEM) spectral estimates , 1976, IEEE Trans. Inf. Theory.
[7] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[8] Johan Karlsson,et al. Uncertainty Bounds for Spectral Estimation , 2012, IEEE Transactions on Automatic Control.
[9] Bin Yu,et al. High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence , 2008, 0811.3628.
[10] D. Luenberger,et al. Estimation of structured covariance matrices , 1982, Proceedings of the IEEE.
[11] Mattia Zorzi,et al. AR Identification of Latent-Variable Graphical Models , 2014, IEEE Transactions on Automatic Control.
[12] L. Mirsky,et al. Results and problems in the theory of doubly-stochastic matrices , 1963 .
[13] Don H. Johnson,et al. Array Signal Processing: Concepts and Techniques , 1993 .
[14] Petre Stoica,et al. Spectral Analysis of Signals , 2009 .
[15] Adrian S. Lewis,et al. Convex Analysis on the Hermitian Matrices , 1996, SIAM J. Optim..
[16] N. R. Goodman. Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .
[17] J. Cadzow. Maximum Entropy Spectral Analysis , 2006 .
[18] T. Georgiou. Structured Covariances and Related Approximation Questions , 2003 .
[19] Thomas L. Marzetta,et al. A linear programming approach to bounding spectral power , 1983, ICASSP.
[20] Pablo A. Parrilo,et al. Latent variable graphical model selection via convex optimization , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[21] F. John. On symmetric matrices whose eigenvalues satisfy linear inequalities , 1966 .
[22] Bo Wahlberg,et al. ARMA Identification of Graphical Models , 2013, IEEE Transactions on Automatic Control.