Towards sentiment analysis for historical texts

This article presents the integration of sentiment analysis in ALCIDE, an online platform for historical content analysis. A prior polarity approach has been applied to a corpus of Italian historical texts, and a new lexical resource has been developed with a semi-automatic mapping starting from two English lexica. This article also reports on a first experiment on contextual polarity using both expert annotators and crowdsourced contributors. The long-term goal of our research is to create a system to support historical studies, which is able to analyse the sentiment in historical texts and to discover the opinion about a topic and its change over time.

[1]  Daumé,et al.  Frustratingly Easy Semi-Supervised Domain Adaptation , 2010 .

[2]  Sihem Amer-Yahia,et al.  MAQSA: a system for social analytics on news , 2012, SIGMOD Conference.

[3]  Ron Artstein,et al.  Survey Article: Inter-Coder Agreement for Computational Linguistics , 2008, CL.

[4]  Christopher Potts,et al.  Learning Word Vectors for Sentiment Analysis , 2011, ACL.

[5]  Ian N. Gregory,et al.  Mapping the English Lake District: a literary GIS , 2011 .

[6]  Jeonghee Yi,et al.  Sentiment analysis: capturing favorability using natural language processing , 2003, K-CAP '03.

[7]  Sara Tonelli,et al.  New Features for FrameNet - WordNet Mapping , 2009, CoNLL.

[8]  Nancy Ide,et al.  Exploiting Semantic Web Technologies for Intelligent Access to Historical Documents , 2004, LREC.

[9]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[10]  Amy Beth Warriner,et al.  Norms of valence, arousal, and dominance for 13,915 English lemmas , 2013, Behavior Research Methods.

[11]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[12]  Rachele Sprugnoli,et al.  ALCIDE: An online platform for the Analysis of Language and Content In a Digital Environment , 2014 .

[13]  Soo-Min Kim,et al.  Determining the Sentiment of Opinions , 2004, COLING.

[14]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[15]  Swapna Somasundaran,et al.  Recognizing Stances in Ideological On-Line Debates , 2010, HLT-NAACL 2010.

[16]  Fernando González-Ladrón-de-Guevara,et al.  Towards an integrated crowdsourcing definition , 2012, J. Inf. Sci..

[17]  Min-Yen Kan,et al.  Perspectives on crowdsourcing annotations for natural language processing , 2012, Language Resources and Evaluation.

[18]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[19]  A. Rocco,et al.  Scritti e discorsi politici , 1938 .

[20]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[21]  Saif Mohammad,et al.  CROWDSOURCING A WORD–EMOTION ASSOCIATION LEXICON , 2013, Comput. Intell..

[22]  Emanuele Pianta,et al.  The TextPro Tool Suite , 2008, LREC.

[23]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[24]  Tuomo Kakkonen,et al.  SentiProfiler: Creating Comparable Visual Profiles of Sentimental Content in Texts , 2011 .

[25]  Saif Mohammad,et al.  From Once Upon a Time to Happily Ever After: Tracking Emotions in Novels and Fairy Tales , 2011, LaTeCH@ACL.

[26]  Malvina Nissim,et al.  Sentiment analysis on Italian tweets , 2013, WASSA@NAACL-HLT.

[27]  Marco Guerini,et al.  Sentiment Analysis: How to Derive Prior Polarities from SentiWordNet , 2013, EMNLP.

[28]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.