Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2)

To model association fields that underly perceptional organization (gestalt) in psychophysics we consider the problem Pcurve of minimizing $\int _{0}^{\ell} \sqrt{\xi^{2} +\kappa^{2}(s)} {\rm d}s $ for a planar curve having fixed initial and final positions and directions. Here κ(s) is the curvature of the curve with free total length ℓ. This problem comes from a model of geometry of vision due to Petitot (in J. Physiol. Paris 97:265–309, 2003; Math. Inf. Sci. Humaines 145:5–101, 1999), and Citti & Sarti (in J. Math. Imaging Vis. 24(3):307–326, 2006). In previous work we proved that the range $\mathcal{R} \subset\mathrm{SE}(2)$ of the exponential map of the underlying geometric problem formulated on SE(2) consists of precisely those end-conditions (xfin,yfin,θfin) that can be connected by a globally minimizing geodesic starting at the origin (xin,yin,θin)=(0,0,0). From the applied imaging point of view it is relevant to analyze the sub-Riemannian geodesics and $\mathcal{R}$ in detail. In this article we show that $\mathcal{R}$ is contained in half space x≥0 and (0,yfin)≠(0,0) is reached with angle π,show that the boundary $\partial\mathcal{R}$ consists of endpoints of minimizers either starting or ending in a cusp,analyze and plot the cones of reachable angles θfin per spatial endpoint (xfin,yfin),relate the endings of association fields to $\partial\mathcal {R}$ and compute the length towards a cusp,analyze the exponential map both with the common arc-length parametrization t in the sub-Riemannian manifold $(\mathrm{SE}(2),\mathrm{Ker}(-\sin\theta{\rm d}x +\cos\theta {\rm d}y), \mathcal{G}_{\xi}:=\xi^{2}(\cos\theta{\rm d}x+ \sin\theta {\rm d}y) \otimes(\cos\theta{\rm d}x+ \sin\theta{\rm d}y) + {\rm d}\theta \otimes{\rm d}\theta)$ and with spatial arc-length parametrization s in the plane $\mathbb{R}^{2}$. Surprisingly, s-parametrization simplifies the exponential map, the curvature formulas, the cusp-surface, and the boundary value problem,present a novel efficient algorithm solving the boundary value problem,show that sub-Riemannian geodesics solve Petitot’s circle bundle model (cf. Petitot in J. Physiol. Paris 97:265–309, [2003]),show a clear similarity with association field lines and sub-Riemannian geodesics.

[1]  Lance R. Williams,et al.  Analytic solution of stochastic completion fields , 1995, Biological Cybernetics.

[2]  Knut-Andreas Lie,et al.  Scale Space and Variational Methods in Computer Vision, Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings , 2009, SSVM.

[3]  Yuri L. Sachkov Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane , 2010 .

[4]  Remco Duits,et al.  Cuspless sub-Riemannian geodesics within the Euclidean motion group SE(d) , 2014 .

[5]  Berthold K. P. Horn The Curve of Least Energy , 1983, TOMS.

[6]  Jean Lorenceau,et al.  Orientation dependent modulation of apparent speed: psychophysical evidence , 2002, Vision Research.

[7]  R. Duits,et al.  The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2D-Euclidean motion group , 2007 .

[8]  Remco Duits,et al.  Line Enhancement and Completion via Linear Left Invariant Scale Spaces on SE(2) , 2009, SSVM.

[9]  Y. Sachkov Conjugate Points in the Euler Elastic Problem , 2008 .

[10]  Y. Sachkov,et al.  Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane , 2011 .

[11]  Y. Frégnac,et al.  Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning. , 1999, Journal of neurobiology.

[12]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  E. Franken Enhancement of crossing elongated structures in images , 2008 .

[14]  J. Marsden,et al.  Reduction of symplectic manifolds with symmetry , 1974 .

[15]  Jean-Paul Gauthier,et al.  Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion , 2010, SIAM J. Control. Optim..

[16]  D. Mumford Elastica and Computer Vision , 1994 .

[17]  Francesco Rossi,et al.  Existence of planar curves minimizing length and curvature , 2009, 0906.5290.

[18]  Yu. L. Sachkov,et al.  Maxwell strata in sub-Riemannian problem on the group of motions of a plane , 2008, 0807.4731.

[19]  A. A. Ardentov,et al.  Solution to Euler’s elastic problem , 2009 .

[20]  van Ma Markus Almsick,et al.  Context models of lines and contours , 2007 .

[21]  Remco Duits,et al.  A New Retinal Vessel Tracking Method Based on Orientation Scores , 2012, ArXiv.

[22]  Y. Sachkov Maxwell strata in the Euler elastic problem , 2008 .

[23]  Arjan Kuijper,et al.  Scale Space and Variational Methods in Computer Vision , 2013, Lecture Notes in Computer Science.

[24]  Scott D. Pauls,et al.  Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model , 2009, Journal of Mathematical Imaging and Vision.

[25]  R. Duits,et al.  Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part II: Non-linear left-invariant diffusions on invertible orientation scores , 2010 .

[26]  R. Duits,et al.  Morphological and Linear Scale Spaces for Fiber Enhancement in DW-MRI , 2013, J. Math. Imaging Vis..

[27]  Jianhong Shen,et al.  EULER'S ELASTICA AND CURVATURE BASED INPAINTINGS , 2002 .

[28]  J. D. Tardós,et al.  Publish or Perish , 1987 .

[29]  Tom Dela Haije,et al.  Erratum to: Morphological and Linear Scale Spaces for Fiber Enhancement in DW-MRI , 2013, J. Math. Imaging Vis..

[30]  W. Klingenberg A course in differential geometry , 1978 .

[31]  Francesco Rossi,et al.  PROJECTIVE REEDS-SHEPP CAR ON S 2 WITH QUADRATIC COST , 2008, 0805.4800.

[32]  J. Petitot,et al.  Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux , 1999 .

[33]  A. Sarti,et al.  An uncertainty principle underlying the functional architecture of V1 , 2012, Journal of Physiology-Paris.

[34]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[35]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[36]  Yu Wang,et al.  Fast Algorithms for p-elastica Energy with the Application to Image Inpainting and Curve Reconstruction , 2011, SSVM.

[37]  Leonhard Euler Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti , 2013, 1307.7187.

[38]  Remco Duits,et al.  Crossing-Preserving Coherence-Enhancing Diffusion on Invertible Orientation Scores , 2009, International Journal of Computer Vision.

[39]  Phillip A. Griffiths,et al.  Exterior Differential Systems and Euler-Lagrange Partial Differential Equations , 2003 .

[40]  P. Griffiths,et al.  Reduction for Constrained Variational Problems and κ 2 2 ds , 1986 .

[41]  Nao Ninomiya,et al.  The 10th anniversary of journal of visualization , 2007, J. Vis..

[42]  Alfred M. Bruckstein,et al.  Discrete elastica , 1996, DGCI.

[43]  Remco Duits,et al.  Left-Invariant Diffusions on the Space of Positions and Orientations and their Application to Crossing-Preserving Smoothing of HARDI images , 2011, International Journal of Computer Vision.

[44]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[45]  R. Duits,et al.  Left-invariant Stochastic Evolution Equations on SE(2) and its Applications to Contour Enhancement and Contour Completion via Invertible Orientation Scores , 2007, 0711.0951.

[46]  S. Ullman,et al.  Filling-in the gaps: The shape of subjective contours and a model for their generation , 1976, Biological Cybernetics.

[47]  Lance R. Williams,et al.  Characterizing the distribution of completion shapes with corners using a mixture of random processes , 1997, Pattern Recognit..

[48]  Remco Duits,et al.  Curve cuspless reconstruction via sub-Riemannian geometry , 2012, 1203.3089.

[49]  R. Duits,et al.  Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part I: Linear left-invariant diffusion equations on SE(2) , 2010 .

[50]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[51]  Ohad Ben-Shahar,et al.  A Tangent Bundle Theory for Visual Curve Completion , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Steven W. Zucker,et al.  The Organization Of Curve Detection: Coarse Tangent Fields And Fine Spline Coverings , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[53]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[54]  L. Ambrosio,et al.  On a Variational Problem Arising in Image Reconstruction , 2003 .

[55]  A. Agrachev Exponential mappings for contact sub-Riemannian structures , 1996 .

[56]  C. Bajaj Algebraic Geometry and its Applications , 1994 .

[57]  A. Sarti,et al.  A model of natural image edge co-occurrence in the rototranslation group. , 2010, Journal of vision.

[58]  S. Grossberg,et al.  Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. , 1985, Psychological review.

[59]  Steven W. Zucker,et al.  The Organization Of Curve Detection: Coarse Tangent Fields And Fine Spline Coverings , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[60]  Remco Duits,et al.  Optimal control for reconstruction of curves without cusps , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[61]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[62]  Alexey Pavlovich Mashtakov Parallel Algorithm and Software for Image Inpainting via Sub-Riemannian Minimizers on the Group of Rototranslations , 2013 .

[63]  W. Hoffman The visual cortex is a contact bundle , 1989 .

[64]  Carl-Fredrik Westin,et al.  Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data (Dagstuhl Seminar 11501) , 2011, Dagstuhl Reports.

[65]  S. Zucker,et al.  The curve indicator random field , 2001 .

[66]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[67]  J. Gauthier,et al.  The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups , 2008, 0806.0734.

[68]  J. Petitot The neurogeometry of pinwheels as a sub-Riemannian contact structure , 2003, Journal of Physiology-Paris.

[69]  Xue-Cheng Tai,et al.  A Fast Algorithm for Euler's Elastica Model Using Augmented Lagrangian Method , 2011, SIAM J. Imaging Sci..

[70]  O Olaf Wittich,et al.  An explicit local uniform large deviation bound for Brownian bridges , 2005 .

[71]  Remco Duits,et al.  Sharpening Fibers in Diffusion Weighted MRI via Erosion , 2014, Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data.

[72]  Mi-Suen Lee,et al.  A Computational Framework for Segmentation and Grouping , 2000 .