A fatigue crack propagation model

Abstract A model for fatigue crack propagation has been developed which incorporates mechanical, cyclic and fatigue properties as well as a length parameter. The latter can be associated with the microstructure of the material. The fatigue failure criterion is based on a measure of the dissipated plastic strain energy. This model predicts crack propagation at low and intermediate ΔK values, i.e. stage I crack growth rate as well as that of the stage II. A number of crack growth rate models proposed earlier, are shown to be particular cases of the one developed herein. Predictions of the model are in good agreement with the experimental data. The required data for predicting the crack growth rate, can be found in standard material handbooks where fatigue properties are listed.

[1]  M. D. German,et al.  Requirements for a one parameter characterization of crack tip fields by the HRR singularity , 1981, International Journal of Fracture.

[2]  Kenneth W. Neale,et al.  A Criterion for Low-Cycle Fatigue Failure Under Biaxial States of Stress , 1981 .

[3]  John W. Hutchinson,et al.  Singular behaviour at the end of a tensile crack in a hardening material , 1968 .

[4]  Daniel Kujawski,et al.  A cumulative damage theory for fatigue crack initiation and propagation , 1984 .

[5]  E. Z. Stowell A STUDY OF THE ENERGY CRITERION FOR FATIGUE , 1966 .

[6]  J. Rice,et al.  Plane strain deformation near a crack tip in a power-law hardening material , 1967 .

[7]  J. Barsom,et al.  Fatigue-Crack Propagation in Steels of Various Yield Strengths , 1971 .

[8]  P. E. Irving,et al.  Comments on: “A correlation for fatigue crack growth rate” , 1977 .

[9]  J. Radon A model for fatigue crack growth in a threshold region , 1982 .

[10]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[11]  C. Feltner,et al.  Microplastic Strain Hysteresis Energy as a Criterion for Fatigue Fracture , 1961 .

[12]  D. E. Martin An Energy Criterion for Low-Cycle Fatigue , 1961 .

[13]  Darrell F. Socie Variable Amplitude Fatigue Life Estimation Models , 1982 .

[14]  W. J. Derrick Jones,et al.  A theory of fatigue based on the microstructural accumulation of strain energy , 1966 .

[15]  Fernand Ellyin,et al.  Cyclic response and inelastic strain energy in low cycle fatigue , 1984 .

[16]  T. Yokobori,et al.  A Critical Evaluation of Mathematical Equations for Fatigue Crack Growth with Special Reference to Ferrite Grain Size and Monotonic Yield Strength Dependence , 1979 .

[17]  Edwin H. Niccolls,et al.  A correlation for fatigue crack growth rate , 1976 .

[18]  G. Glinka A cumulative model of fatigue crack growth , 1982 .

[19]  Y. Garud A New Approach to the Evaluation of Fatigue Under Multiaxial Loadings , 1981 .

[20]  N. Dowling,et al.  Fatigue Crack Growth Rate Testing of Two Structural Steels , 1979 .

[21]  Crack Tip Growth Rate Model for Cyclic Loading , 1984 .

[22]  A. K. Head XCVIII. The growth of fatigue cracks , 1953 .

[23]  C. E. Richards,et al.  THE MECHANICS AND MECHANISMS OF FATIGUE CRACK GROWTH IN METALS (A REVIEW) , 1974 .

[24]  C. Bathias,et al.  Fatigue crack propagation in martensitic and austenitic steels , 1973 .

[25]  B. Tomkins Micromechanisms of fatigue crack growth at high stress , 1980 .

[26]  Fernand Ellyin,et al.  A criterion for fatigue under multiaxial states of stress , 1974 .

[27]  Han-Wen Liu,et al.  A mechanical model for fatigue crack propagation. , 1969 .

[28]  Brian N. Leis,et al.  An Energy-Based Fatigue and Creep-Fatigue Damage Parameter , 1977 .

[29]  K. B. Broberg,et al.  The foundations of fracture mechanics , 1982 .

[30]  A. Saxena,et al.  A model for fatigue crack propagation , 1975 .