On the Q–S Chaos Synchronization of Fractional-Order Discrete-Time Systems: General Method and Examples

In this paper, we propose two control strategies for the – synchronization of fractional-order discrete-time chaotic systems. Assuming that the dimension of the response system is higher than that of the drive system , the first control scheme achieves -dimensional synchronization whereas the second deals with the -dimensional case. The stability of the proposed schemes is established by means of the linearization method. Numerical results are presented to confirm the findings of the study.

[1]  D. Baleanu,et al.  Discrete fractional logistic map and its chaos , 2014 .

[2]  Dumitru Baleanu,et al.  Chaos synchronization of the discrete fractional logistic map , 2014, Signal Process..

[3]  B. Sharma,et al.  Investigation of chaos in fractional order generalized hyperchaotic Henon map , 2017 .

[4]  Kecun Zhang,et al.  A general scheme for Q-S synchronization of chaotic systems with unknown parameters and scaling functions , 2010, Appl. Math. Comput..

[5]  R. Lozi UN ATTRACTEUR ÉTRANGE (?) DU TYPE ATTRACTEUR DE HÉNON , 1978 .

[6]  Adel Ouannas,et al.  A robust control method for Q-S synchronization between different dimensional integer-order and fractional-order chaotic systems , 2015 .

[7]  Yong Liu,et al.  Chaotic synchronization between linearly coupled discrete fractional Hénon maps , 2016 .

[8]  George A. Anastassiou,et al.  Principles of delta fractional calculus on time scales and inequalities , 2010, Math. Comput. Model..

[9]  Tao Ren,et al.  Q–S synchronization between chaotic systems with double scaling functions , 2010 .

[10]  M. Hénon A two-dimensional mapping with a strange attractor , 1976 .

[11]  A. Peterson,et al.  Discrete Fractional Calculus , 2016 .

[12]  Maamar Bettayeb,et al.  A new contribution for the impulsive synchronization of fractional-order discrete-time chaotic systems , 2017 .

[13]  K. Stefanski Modelling chaos and hyperchaos with 3-D maps , 1998 .

[14]  Zhenya Yan,et al.  Q-S synchronization in 3D Hénon-like map and generalized Hénon map via a scalar controller , 2005 .

[15]  Zhenya Yan,et al.  Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems--a symbolic-numeric computation approach. , 2005, Chaos.

[16]  Sundarapandian Vaidyanathan,et al.  On a simple approach for Q-S synchronisation of chaotic dynamical systems in continuous-time , 2017, Int. J. Comput. Sci. Math..

[17]  Zhenya Yan,et al.  A new scheme to generalized (lag, anticipated, and complete) synchronization in chaotic and hyperchaotic systems. , 2005, Chaos.

[18]  Paul W. Eloe,et al.  DISCRETE FRACTIONAL CALCULUS WITH THE NABLA OPERATOR , 2009 .

[19]  D. Hitzl,et al.  An exploration of the Hénon quadratic map , 1985 .

[20]  Adel Ouannas,et al.  Generalized synchronization of different dimensional chaotic dynamical systems in discrete time , 2015 .

[21]  Thabet Abdeljawad,et al.  On Riemann and Caputo fractional differences , 2011, Comput. Math. Appl..

[22]  Viet-Thanh Pham,et al.  Q-S Chaos Synchronization Between Fractional-Order Master and Integer-Order Slave Systems , 2018, 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD).

[23]  Adel Ouannas,et al.  Inverse full state hybrid projective synchronization for chaotic maps with different dimensions , 2016 .

[24]  Dumitru Baleanu,et al.  Discrete chaos in fractional sine and standard maps , 2014 .

[25]  Ewa Girejko,et al.  Stability of discrete fractional-order nonlinear systems with the nabla Caputo difference , 2013 .

[26]  Leon O. Chua,et al.  Conditions for impulsive Synchronization of Chaotic and hyperchaotic Systems , 2001, Int. J. Bifurc. Chaos.

[27]  J. Cermák,et al.  On explicit stability conditions for a linear fractional difference system , 2015 .

[28]  Zhenyuan Xu,et al.  A general scheme for Q-S synchronization of chaotic systems , 2008 .

[29]  Yong Liu,et al.  Discrete Chaos in Fractional H enon Maps , 2014 .

[30]  D. Baleanu,et al.  Chaos synchronization of fractional chaotic maps based on the stability condition , 2016 .

[31]  Ahmad Taher Azar,et al.  A new type of hybrid synchronization between arbitrary hyperchaotic maps , 2016, International Journal of Machine Learning and Cybernetics.

[32]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[33]  T. Hu Discrete Chaos in Fractional Henon Map , 2014 .