Simplex space‐time meshes in compressible flow simulations

Employing simplex space-time meshes enlarges the scope of compressible flow simulations. The simultaneous discretization of space and time with simplex elements extends the flexibility of unstructured meshes from space to time. In this work, we adopt a finite element formulation for compressible flows to simplex space-time meshes. The method obtained allows, e.g., flow simulations on spatial domains that change topology with time. We demonstrate this with the two-dimensional simulation of compressible flow in a valve that fully closes and opens again. Furthermore, simplex space-time meshes facilitate local temporal refinement. A three-dimensional transient simulation of blow-by past piston rings is run in parallel on 120 cores. The timings point out savings of computation time gained from local temporal refinement in space-time meshes.

[1]  Anindya Ghoshal,et al.  Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling , 2017 .

[2]  Marek Behr,et al.  Simplex space–time meshes in finite element simulations , 2008 .

[3]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[4]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[5]  Jml Maubach,et al.  Iterative methods for non-linear partial differential equations , 1991 .

[6]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[7]  Thomas J. R. Hughes,et al.  Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations , 1984 .

[8]  Olaf Steinbach,et al.  Refinement of flexible space–time finite element meshes and discontinuous Galerkin methods , 2011, Comput. Vis. Sci..

[9]  Marek Behr,et al.  On the Simulation of Viscoelastic Free-Surface Flows , 2016 .

[10]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[11]  A. Oliva,et al.  Numerical multiphase simulation and validation of the flow in the piston ring pack of an internal combustion engine , 2016 .

[12]  Luming Wang,et al.  Discontinuous Galerkin Methods on Moving Domains with Large Deformations , 2015 .

[13]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[14]  J. E. Carter,et al.  Numerical solutions of the Navier-Stokes equations for the supersonic laminar flow over a two-dimensional compression corner , 1972 .

[15]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[16]  Marek Behr,et al.  On stabilized space‐time FEM for anisotropic meshes: Incompressible Navier–Stokes equations and applications to blood flow in medical devices , 2017 .

[17]  Martin J. Gander,et al.  Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems , 2014, SIAM J. Sci. Comput..

[18]  Marek Behr,et al.  Simplex space‐time meshes in two‐phase flow simulations , 2018, ArXiv.

[19]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[20]  E. Stein,et al.  Finite elements in space and time for generalized viscoelastic maxwell model , 2001 .

[21]  Marek Behr,et al.  Finite element solution strategies for large-scale flow simulations☆ , 1994 .

[22]  F. Shakib Finite element analysis of the compressible Euler and Navier-Stokes equations , 1989 .

[23]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[24]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[25]  Christian B Allen,et al.  Conservative unsteady aerodynamic simulation of arbitrary boundary motion using structured and unstructured meshes in time , 2012 .

[26]  N. Higham Computing real square roots of a real matrix , 1987 .

[27]  Huidong Yang,et al.  Comparison of algebraic multigrid methods for an adaptive space–time finite‐element discretization of the heat equation in 3D and 4D , 2018, Numer. Linear Algebra Appl..

[28]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[29]  A. Reusken,et al.  On a Space-Time Extended Finite Element Method for the Solution of a Class of Two-Phase Mass Transport Problems , 2015 .

[30]  Guillermo Hauke,et al.  Simple stabilizing matrices for the computation of compressible flows in primitive variables , 2001 .

[31]  Luming Wang,et al.  A high-order discontinuous Galerkin method with unstructured space–time meshes for two-dimensional compressible flows on domains with large deformations , 2015 .

[32]  Thomas J. R. Hughes,et al.  A comparative study of different sets of variables for solving compressible and incompressible flows , 1998 .