On substitution invariant Sturmian words: an application of Rauzy fractals

Sturmian words are infinite words that have exactly n + 1 factors of length n for every positive integer n. A Sturmian word s�,� is also defined as a coding over a two-letter alphabet of the orbit of the pointunder the action of the irrational rotation R� : x 7! x + � (mod 1). Yasutomi characterized in (34) all the pairs (�,�) such that the Sturmian word s�,� is a fixed point of some non-trivial substitution. By investigating the Rauzy frac- tals associated with invertible substitutions, we give an alternative geometric proof of Yasutomi's characterization.

[1]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[2]  Shin-ichi Yasutomi,et al.  On continued fractions, substitutions and characteristic sequences [nx+y]-[(n-1)x+y] , 1990 .

[3]  Shigeki Akiyama,et al.  On the connectedness of self-affine attractors , 2004 .

[4]  Zhi-Xiong Wen,et al.  LOCAL ISOMORPHISMS OF INVERTIBLE SUBSTITUTIONS , 1994 .

[5]  Hui Rao,et al.  Purely periodic beta-expansions with Pisot unit base , 2004 .

[6]  Laurent Vuillon,et al.  Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences , 2000, Discret. Math..

[8]  Hiromi Ei,et al.  Decomposition theorem on invertible substitutions , 1998 .

[9]  Shigeki Akiyama,et al.  Connectedness of number theoretical tilings , 2005, Discret. Math. Theor. Comput. Sci..

[10]  Bruno Parvaix,et al.  Propriétés d'invariance des mots sturmiens , 1997 .

[11]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[12]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[13]  Tom C. Brown,et al.  Descriptions of the Characteristic Sequence of an Irrational , 1993, Canadian Mathematical Bulletin.

[14]  Alfred J. van der Poorten,et al.  Substitution invariant Beatty sequences , 1996 .

[15]  Valérie Berthé,et al.  Initial powers of Sturmian sequences , 2006 .

[16]  J. Berstel,et al.  Morphismes de Sturm , 1994 .

[17]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[18]  M. Lothaire,et al.  Algebraic Combinatorics on Words: Index of Notation , 2002 .

[19]  P. Shiue,et al.  Substitution invariant cutting sequences , 1993 .

[20]  Isabelle Fagnot A little more about morphic Sturmian words , 2006, RAIRO Theor. Informatics Appl..

[21]  G. Rauzy Nombres algébriques et substitutions , 1982 .

[22]  Luca Q. Zamboni,et al.  INITIAL POWERS OF STURMIAN WORDS , 2001 .

[23]  Shunji Ito,et al.  On periodic β-expansions of Pisot numbers and Rauzy fractals , 2001 .

[24]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[25]  Filippo Mignosi,et al.  Morphismes sturmiens et règles de Rauzy , 1993 .

[26]  Hui Rao,et al.  Atomic surfaces, tilings and coincidence I. irreducible case , 2006 .

[27]  K. Falconer Techniques in fractal geometry , 1997 .

[28]  Marcy Barge,et al.  Coincidence for substitutions of Pisot type , 2002 .

[29]  Shigeki Akiyama,et al.  Connectedness of number theoretic tilings , 2004 .

[30]  Ethan M. Coven,et al.  Sequences with minimal block growth , 2005, Mathematical systems theory.

[31]  Edita Pelantová,et al.  COMPLETE CHARACTERIZATION OF SUBSTITUTION INVARIANT STURMIAN SEQUENCES , 2005 .

[32]  Zhi-Ying Wen,et al.  Invertible substitutions and Sturmian sequences , 2003, Eur. J. Comb..

[33]  Patrice Séébold On the Conjugation of Standard Morphisms , 1996, MFCS.

[34]  Cyril Allauzen Une caractérisation simple des nombres de Sturm , 1998 .

[35]  H. Rao,et al.  PURELY PERIODIC β-EXPANSIONS WITH PISOT UNIT BASE , 2004 .

[36]  Jean Berstel,et al.  A Remark on Morphic Sturmian Words , 1994, RAIRO Theor. Informatics Appl..

[37]  Bruno Parvaix,et al.  Substitution invariant sturmian bisequences , 1999 .

[38]  V Canterini Connectedness of geometric representation of substitutions of Pisot type , 2003 .

[39]  Yang Wang,et al.  Self-affine tiling via substitution dynamical systems and Rauzy fractals , 2002 .

[40]  Ethan M. Coven,et al.  Sequences with minimal block growth II , 1973, Mathematical systems theory.

[41]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .