On substitution invariant Sturmian words: an application of Rauzy fractals
暂无分享,去创建一个
Hui Rao | Valérie Berthé | Shunji Ito | Hiromi Ei | V. Berthé | Shunji Ito | H. Rao | Hiromi Ei | Shunji Ito
[1] Mukarram Ahmad,et al. Continued fractions , 2019, Quadratic Number Theory.
[2] Shin-ichi Yasutomi,et al. On continued fractions, substitutions and characteristic sequences [nx+y]-[(n-1)x+y] , 1990 .
[3] Shigeki Akiyama,et al. On the connectedness of self-affine attractors , 2004 .
[4] Zhi-Xiong Wen,et al. LOCAL ISOMORPHISMS OF INVERTIBLE SUBSTITUTIONS , 1994 .
[5] Hui Rao,et al. Purely periodic beta-expansions with Pisot unit base , 2004 .
[6] Laurent Vuillon,et al. Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences , 2000, Discret. Math..
[8] Hiromi Ei,et al. Decomposition theorem on invertible substitutions , 1998 .
[9] Shigeki Akiyama,et al. Connectedness of number theoretical tilings , 2005, Discret. Math. Theor. Comput. Sci..
[10] Bruno Parvaix,et al. Propriétés d'invariance des mots sturmiens , 1997 .
[11] Chris D. Godsil,et al. ALGEBRAIC COMBINATORICS , 2013 .
[12] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[13] Tom C. Brown,et al. Descriptions of the Characteristic Sequence of an Irrational , 1993, Canadian Mathematical Bulletin.
[14] Alfred J. van der Poorten,et al. Substitution invariant Beatty sequences , 1996 .
[15] Valérie Berthé,et al. Initial powers of Sturmian sequences , 2006 .
[16] J. Berstel,et al. Morphismes de Sturm , 1994 .
[17] M. Lothaire. Algebraic Combinatorics on Words , 2002 .
[18] M. Lothaire,et al. Algebraic Combinatorics on Words: Index of Notation , 2002 .
[19] P. Shiue,et al. Substitution invariant cutting sequences , 1993 .
[20] Isabelle Fagnot. A little more about morphic Sturmian words , 2006, RAIRO Theor. Informatics Appl..
[21] G. Rauzy. Nombres algébriques et substitutions , 1982 .
[22] Luca Q. Zamboni,et al. INITIAL POWERS OF STURMIAN WORDS , 2001 .
[23] Shunji Ito,et al. On periodic β-expansions of Pisot numbers and Rauzy fractals , 2001 .
[24] P. Arnoux,et al. Pisot substitutions and Rauzy fractals , 2001 .
[25] Filippo Mignosi,et al. Morphismes sturmiens et règles de Rauzy , 1993 .
[26] Hui Rao,et al. Atomic surfaces, tilings and coincidence I. irreducible case , 2006 .
[27] K. Falconer. Techniques in fractal geometry , 1997 .
[28] Marcy Barge,et al. Coincidence for substitutions of Pisot type , 2002 .
[29] Shigeki Akiyama,et al. Connectedness of number theoretic tilings , 2004 .
[30] Ethan M. Coven,et al. Sequences with minimal block growth , 2005, Mathematical systems theory.
[31] Edita Pelantová,et al. COMPLETE CHARACTERIZATION OF SUBSTITUTION INVARIANT STURMIAN SEQUENCES , 2005 .
[32] Zhi-Ying Wen,et al. Invertible substitutions and Sturmian sequences , 2003, Eur. J. Comb..
[33] Patrice Séébold. On the Conjugation of Standard Morphisms , 1996, MFCS.
[34] Cyril Allauzen. Une caractérisation simple des nombres de Sturm , 1998 .
[35] H. Rao,et al. PURELY PERIODIC β-EXPANSIONS WITH PISOT UNIT BASE , 2004 .
[36] Jean Berstel,et al. A Remark on Morphic Sturmian Words , 1994, RAIRO Theor. Informatics Appl..
[37] Bruno Parvaix,et al. Substitution invariant sturmian bisequences , 1999 .
[38] V Canterini. Connectedness of geometric representation of substitutions of Pisot type , 2003 .
[39] Yang Wang,et al. Self-affine tiling via substitution dynamical systems and Rauzy fractals , 2002 .
[40] Ethan M. Coven,et al. Sequences with minimal block growth II , 1973, Mathematical systems theory.
[41] M. Queffélec. Substitution dynamical systems, spectral analysis , 1987 .