Reliable thermodynamic estimators for screening caloric materials

Abstract Reversible, diffusionless, first-order solid-solid phase transitions accompanied by caloric effects are critical for applications in the solid-state cooling and heat-pumping devices. Accelerated discovery of caloric materials requires reliable but faster estimators for predictions and high-throughput screening of system-specific dominant caloric contributions. We assess reliability of the computational methods that provide thermodynamic properties in relevant solid phases at or near a phase transition. We test the methods using the well-studied B2 FeRh alloy as a “fruit fly” in such a materials genome discovery, as it exhibits a metamagnetic transition which generates multicaloric (magneto-, elasto-, and baro-caloric) responses. For lattice entropy contributions, we find that the commonly-used linear-response and small-displacement phonon methods are invalid near instabilities that arise from the anharmonicity of atomic potentials, and we offer a more reliable and precise method for calculating lattice entropy at a fixed temperature. Then, we apply a set of reliable methods and estimators to the metamagnetic transition in FeRh (predicted 346 ± 12 K, observed 353 ± 1 K) and calculate the associated caloric properties, such as isothermal entropy and isentropic temperature changes.

[1]  R. C. Wayne Pressure Dependence of the Magnetic Transitions in Fe-Rh Alloys , 1968 .

[2]  E. Fullerton,et al.  Magnetization reversal and confinement effects across the metamagnetic phase transition in mesoscale FeRh structures , 2018 .

[3]  C. W. Chen,et al.  MOSSBAUER STUDY OF HYPERFINE FIELDS AND ISOMER SHIFTS IN THE Fe-Rh ALLOYS , 1963 .

[4]  C. S. D. Melo Theory of Itinerant Electron Magnetism , 2002 .

[5]  Christina H. Chen,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011, Advanced materials.

[6]  J. Kouvel,et al.  Effects of Mechanical and Thermal Treatment on the Structure and Magnetic Transitions in FeRh , 1967 .

[7]  C. Schneider,et al.  Magnetic surface domain imaging of uncapped epitaxial FeRh(001) thin films across the temperature-induced metamagnetic transition , 2016 .

[8]  M. Asta,et al.  Energetics of homogeneously-random fcc Al-Ag alloys: A detailed comparison of computational methods , 1997 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Nikolai A Zarkevich,et al.  Reliable first-principles alloy thermodynamics via truncated cluster expansions. , 2004, Physical review letters.

[11]  Nikolai A. Zarkevich,et al.  First-principles prediction of phase-segregating alloy phase diagrams and a rapid design estimate of their transition temperatures , 2007 .

[12]  A. Pathak,et al.  Giant enhancement of the magnetocaloric response in Ni–Co–Mn–Ti by rapid solidification , 2019, Acta Materialia.

[13]  W. Giauque A THERMODYNAMIC TREATMENT OF CERTAIN MAGNETIC EFFECTS. A PROPOSED METHOD OF PRODUCING TEMPERATURES CONSIDERABLY BELOW 1° ABSOLUTE , 1927 .

[14]  Eric E. Fullerton,et al.  FeRh/FePt exchange spring films for thermally assisted magnetic recording media , 2003 .

[15]  V. Garcia,et al.  Electric-field control of magnetic order above room temperature. , 2014, Nature materials.

[16]  M. Pardavi-Horvath,et al.  Pressure-induced antiferromagnetism in ferromagnetic Fe51.5Rh48.5 alloy , 1981 .

[17]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[18]  Vitalij K. Pecharsky,et al.  High-throughput search for caloric materials: the CaloriCool approach , 2018 .

[19]  Duane D. Johnson,et al.  Predicting enthalpies of molecular substances: application to LiBH4. , 2008, Physical review letters.

[20]  A. Pathak,et al.  Manipulating the stability of crystallographic and magnetic sub-lattices: A first-order magnetoelastic transformation in transition metal based Laves phase , 2018, Acta Materialia.

[21]  T. Yokoyama,et al.  Anomalous structural behavior in the metamagnetic transition of FeRh thin films from a local viewpoint , 2015 .

[22]  R Ramesh,et al.  Room-temperature antiferromagnetic memory resistor. , 2014, Nature materials.

[23]  F. Hellman,et al.  Thermodynamic measurements of Fe-Rh alloys. , 2012, Physical review letters.

[24]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[25]  K. Ollefs,et al.  Hysteresis Design of Magnetocaloric Materials-From Basic Mechanisms to Applications , 2018, Energy Technology.

[26]  Duane D. Johnson,et al.  Predicted hcp Ag-Al metastable phase diagram, equilibrium ground states, and precipitate structure , 2003 .

[27]  Duane D. Johnson,et al.  FeRh ground state and martensitic transformation , 2017, 1710.04199.

[28]  R. Chantrell,et al.  Higher order exchange interactions leading to metamagnetism in FeRh , 2014, 1405.3043.

[29]  R. Ramesh,et al.  Revealing the hidden structural phases of FeRh , 2016, 1611.01138.

[30]  A. Popescu,et al.  Thermally driven anomalous Hall effect transitions in FeRh. , 2018, Physical review. B.

[31]  D. Melville,et al.  Model of the antiferromagnetic-ferromagnetic transition in FeRh alloys , 1972 .

[32]  A. Tishin,et al.  The magnetocaloric effect in Fe49Rh51 compound , 1990 .

[33]  N. P. Grazhdankina MAGNETIC FIRST ORDER PHASE TRANSITIONS , 1969 .

[34]  R. Hultgren,et al.  Selected Values of Thermodynamic Properties of Metals and Alloys , 1963 .

[35]  B. Fultz,et al.  Vibrational entropies of alloying and compound formation: Experimental trends , 1999 .

[36]  A. Alam,et al.  Structural, magnetic, and defect properties of Co-Pt-type magnetic-storage alloys: Density-functional theory study of thermal processing effects , 2010 .

[37]  M. Fallot Les alliages du fer avec les métaux de la famille du platine , 1938 .

[38]  P. Debye Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur , 1926 .

[39]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[40]  Duane D. Johnson,et al.  Nudged-elastic band method with two climbing images: finding transition states in complex energy landscapes. , 2014, The Journal of chemical physics.

[41]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[42]  F. Sirotti,et al.  Stable room-temperature ferromagnetic phase at the FeRh(100) surface , 2015, Scientific Reports.

[43]  H. N. Lee,et al.  Full Electroresistance Modulation in a Mixed-Phase Metallic Alloy. , 2016, Physical review letters.

[44]  A. Pyatakov,et al.  Novel applications of magnetic materials and technologies for medicine , 2017, Journal of Magnetism and Magnetic Materials.

[45]  J. Staunton,et al.  Fluctuating local moments, itinerant electrons, and the magnetocaloric effect: Compositional hypersensitivity of FeRh , 2014, 1401.4004.

[46]  T. Suzuki,et al.  Magnetic Properties of Single-Crystalline FeRh Alloy Thin Films , 2008, IEEE Transactions on Magnetics.

[47]  J. Hoyt,et al.  Thermodynamic properties of coherent interfaces in f.c.c.-based Ag-Al alloys: A first-principles study , 2000 .

[48]  Mannan Ali,et al.  Ferromagnetism at the interfaces of antiferromagnetic FeRh epilayers , 2010 .

[49]  C. Marrows,et al.  Strain-tuning of the magnetocaloric transition temperature in model FeRh films , 2018 .

[50]  S. Roy,et al.  Reproducible room temperature giant magnetocaloric effect in Fe–Rh , 2008 .

[51]  Dario Alfè,et al.  PHON: A program to calculate phonons using the small displacement method , 2009, Comput. Phys. Commun..

[52]  H. Wende,et al.  Impact of lattice dynamics on the phase stability of metamagnetic FeRh: Bulk and thin films , 2016, 1608.04268.

[53]  P. Algarabel,et al.  Giant volume magnetostriction in the FeRh alloy. , 1994, Physical review. B, Condensed matter.

[54]  M. Bibes,et al.  Large reversible caloric effect in FeRh thin films via a dual-stimulus multicaloric cycle , 2016, Nature Communications.

[55]  Teresa Cast'an,et al.  Magnetocaloric and barocaloric responses in magnetovolumic systems , 2015, 1504.03479.

[56]  Kostorz,et al.  Short-range order and pair potentials in Au-Ag. , 1992, Physical review. B, Condensed matter.

[57]  Graeme Henkelman,et al.  A generalized solid-state nudged elastic band method. , 2012, The Journal of chemical physics.

[58]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[59]  T. G. Woodcock,et al.  Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions , 2016 .

[60]  M. J. Richardson,et al.  Specific heat measurements on an Fe Rh alloy , 1973 .

[61]  M. Wuttig,et al.  Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires , 2012 .

[62]  A. Smirnov,et al.  Structure and stability of hcp bulk and nano-precipitated Ag2Al , 2002 .

[63]  Moruzzi Vl,et al.  Antiferromagnetic-ferromagnetic transition in FeRh. , 1992 .

[64]  M. Holt,et al.  Phase Coexistence and Kinetic Arrest in the Magnetostructural Transition of the Ordered Alloy FeRh , 2018, Scientific Reports.

[65]  I. Turek,et al.  Physical properties of FeRh alloys: The antiferromagnetic to ferromagnetic transition , 2015 .

[66]  A. Zunger,et al.  Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures , 1997, cond-mat/9710225.

[67]  Christopher M Wolverton,et al.  First-principles theory of vibrational effects on the phase stability of Cu-Au compounds and alloys , 1998 .

[68]  Duane D. Johnson,et al.  Coexistence pressure for a martensitic transformation from theory and experiment: Revisiting the bcc-hcp transition of iron under pressure , 2014, 1412.1849.

[69]  Charge redistribution and phonon entropy of vanadium alloys. , 2006, Physical review letters.

[70]  JAMES STUART,et al.  Magnetism , 1872, Nature.

[71]  Oliver Gutfleisch,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011 .

[72]  J. V. Gilfrich,et al.  Effect of Low‐Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi , 1963 .

[73]  S. A. Nikitin,et al.  Anomalously high entropy change in FeRh alloy , 1996 .

[74]  R. Levitin,et al.  Magnetostriction of the Metamagnetic Iron-rhodium Alloy , 1966 .

[75]  V. Pecharsky,et al.  Thirty years of near room temperature magnetic cooling: Where we are today and future prospects , 2008 .

[76]  E. Fullerton,et al.  Magnetic and structural properties of FePt-FeRh exchange spring films for thermally assisted magnetic recording media , 2004, IEEE Transactions on Magnetics.

[77]  H. Jónsson,et al.  Nudged elastic band method for finding minimum energy paths of transitions , 1998 .

[78]  Jun Cui,et al.  (Magneto)caloric refrigeration: is there light at the end of the tunnel? , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[79]  D. Kodderitzsch,et al.  Finite-temperature magnetism of FeRh compounds , 2015, 1509.03581.

[80]  B. Koopmans,et al.  Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films. , 2004, Physical review letters.

[81]  J. B. Mckinnon,et al.  The antiferromagnetic-ferromagnetic transition in iron-rhodium alloys , 1970 .

[82]  Duane D. Johnson,et al.  Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure. , 2015, The Journal of chemical physics.

[83]  L. Muldawer,et al.  Antiferromagnetic‐Ferromagnetic Transformation in FeRh , 1961 .

[84]  A. Tishin,et al.  Alloys of the FeRh system as a new class of working material for magnetic refrigerators , 1992 .

[85]  L. Mañosa,et al.  Barocaloric and magnetocaloric effects in Fe49Rh51 , 2014, 1405.7156.

[86]  J. Kouvel Unusual Nature of the Abrupt Magnetic Transition in FeRh and Its Pseudobinary Variants , 1966 .

[87]  N. Spaldin,et al.  Strain-induced structural instability in FeRh , 2016, 1603.01827.

[88]  L. Sandratskii,et al.  Magnetic excitations and femtomagnetism of FeRh: A first-principles study , 2011 .

[89]  H. Hasegawa Electronic structures and local magnetic moments in ferromagnetic and antiferromagnetic FexRh1−x alloys , 1987 .

[90]  L. Mañosa,et al.  Special issue on caloric materials , 2018 .

[91]  M. Wuttig,et al.  Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width , 2006, Nature materials.

[92]  Mark Asta,et al.  Thermodynamic properties of FCC-based Al-Ag alloys , 1997 .

[93]  Marco Buongiorno Nardelli,et al.  High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model , 2014, 1407.7789.

[94]  G. Inden,et al.  Phase equilibria in the Fe–Rh–Ti system II. CVM Calculations , 2007 .

[95]  Johnson,et al.  Modified Broyden's method for accelerating convergence in self-consistent calculations. , 1988, Physical review. B, Condensed matter.

[96]  G. Inden,et al.  Phase equilibria in the Fe–Re–Ti system I. Experimental results , 2007 .

[97]  和雄 渡辺,et al.  高温・強磁場中磁化測定による FeRh 合金のメタ磁気相転移の観測 , 2016 .

[98]  Duane D. Johnson,et al.  Stable atomic structure of NiTi austenite , 2014, 1404.0423.

[99]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[100]  A. Jezierski,et al.  On a structural phase transition in the ordered FeRh alloy , 1994 .

[101]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[102]  J. Kouvel,et al.  Anomalous Magnetic Moments and Transformations in the Ordered Alloy FeRh , 1962 .

[103]  C. W. Chen,et al.  Magnetic Moments and Unpaired Spin Densities in the Fe-Rh Alloys , 1964 .

[104]  A. Ievlev,et al.  Magnetic order multilayering in FeRh thin films by He-Ion irradiation , 2018 .

[105]  S. Nikitin,et al.  Giant elastocaloric effect in FeRh alloy , 1992 .

[106]  L. Zsoldos Lattice Parameter Change of FeRh Alloys due to Antiferromagnetic‐Ferromagnetic Transformation , 1967 .

[107]  L. Swartzendruber The Fe−Rh (Iron-Rhodium) system , 1984 .

[108]  E. Abrahamson,et al.  THE LATTICE PARAMETERS AND SOLUBILITY LIMITS OF ALPHA IRON AS AFFECTED BY SOME BINARY TRANSITION-ELEMENT ADDITIONS. , 1966 .

[109]  R. Levitin,et al.  Magnetic and magnetoelastic properties of a metamagnetic iron-rhodium alloy , 2003 .

[110]  Johnson,et al.  Density-functional theory for random alloys: Total energy within the coherent-potential approximation. , 1986, Physical review letters.

[111]  P. Walter Exchange Inversion in Ternary Modifications of Iron Rhodium , 1964 .

[112]  P. Ramm,et al.  Laser-induced generation and quenching of magnetization on FeRh studied with time-resolved x-ray magnetic circular dichroism , 2010 .

[113]  Nikolai Zarkevich,et al.  Structural database for reducing cost in materials design and complexity of multiscale computations , 2006, Complex..

[114]  Moruzzi Vl,et al.  Giant magnetoresistance in FeRh: A natural magnetic multilayer. , 1992 .

[115]  K. G. Sandeman Magnetocaloric materials: The search for new systems , 2012, 1201.3113.

[116]  A. Cazin Sur les effets thermiques du magnétisme , 1876 .

[117]  C. Paduani Magnetic properties of Fe–Rh alloys , 2001 .

[118]  N. T. Nam,et al.  Magnetization behaviors for FeRh single crystal thin films , 2008 .

[119]  S. Senanayake,et al.  In Situ Formation of FeRh Nanoalloys for Oxygenate Synthesis , 2018, ACS Catalysis.

[120]  W. Han,et al.  A realization scheme of metamagnetic phase transition in FeRh films grown on glass substrates , 2017, Applied Surface Science.

[121]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[122]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[123]  D. D. Johnson,et al.  Shape-memory transformations of NiTi: minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states. , 2014, Physical review letters.