Electrical conductivity as a constraint on lower mantle thermo-chemical structure

[1]  F. Deschamps,et al.  Small post‐perovskite patches at the base of lower mantle primordial reservoirs: Insights from 2‐D numerical modeling and implications for ULVZs , 2016 .

[2]  T. Yoshino,et al.  Electrical conductivity model of Al-bearing bridgmanite with implications for the electrical structure of the Earth's lower mantle , 2016 .

[3]  P. Tackley,et al.  Effects of the post-perovskite phase transition properties on the stability and structure of primordial reservoirs in the lower mantle of the Earth , 2015 .

[4]  N. Olsen,et al.  A new model of Earth's radial conductivity structure derived from over 10 yr of satellite and observatory magnetic data , 2015 .

[5]  B. Langlais,et al.  Electrical conductivity of the Earth's mantle from the first Swarm magnetic field measurements , 2015 .

[6]  L. Dubrovinsky,et al.  Lower mantle electrical conductivity based on measurements of Al, Fe-bearing perovskite under lower mantle conditions , 2014 .

[7]  Takao Koyama,et al.  Three-dimensional electrical conductivity structure beneath Australia from inversion of geomagnetic observatory data: evidence for lateral variations in transition-zone temperature, water content and melt , 2014 .

[8]  Alexey Kuvshinov,et al.  Global 3‐D imaging of mantle conductivity based on inversion of observatory C‐responses—II. Data analysis and results , 2012 .

[9]  Bernhard S. A. Schuberth,et al.  Reconciling dynamic and seismic models of Earth's lower mantle: The dominant role of thermal heterogeneity , 2012 .

[10]  P. Tackley,et al.  The primitive nature of large low shear-wave velocity provinces , 2012 .

[11]  J. Trampert,et al.  Seismic and mineralogical structures of the lower mantle from probabilistic tomography , 2012 .

[12]  Alexey Kuvshinov,et al.  Global 3-D imaging of mantle electrical conductivity based on inversion of observatory C-responses - I. An approach and its verification , 2012 .

[13]  Amir Khan,et al.  A geophysical perspective on mantle water content and melting: Inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles , 2012 .

[14]  Y. Ohishi,et al.  The valence state and partitioning of iron in the Earth's lowermost mantle , 2011 .

[15]  K. Hirose,et al.  Spin crossover and iron-rich silicate melt in the Earth’s deep mantle , 2011, Nature.

[16]  T. Yoshino,et al.  Effect of iron content on electrical conductivity of ferropericlase with implications for the spin transition pressure , 2011 .

[17]  John H. Woodhouse,et al.  S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements , 2011 .

[18]  J. Velímský,et al.  Electrical conductivity in the lower mantle: Constraints from CHAMP satellite data by time-domain EM induction modelling , 2010 .

[19]  G. Aquilanti,et al.  Experimental evidence for perovskite and post-perovskite coexistence throughout the whole D″ region , 2010 .

[20]  K. Shimizu,et al.  Electrical conductivities of pyrolitic mantle and MORB materials up to the lowermost mantle conditions , 2010 .

[21]  Tomoo Katsura,et al.  The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle , 2009 .

[22]  Adam Schultz,et al.  Global electromagnetic induction constraints on transition-zone water content variations , 2009, Nature.

[23]  P. Tarits,et al.  Constraints on thermal state and composition of the Earth's lower mantle from electromagnetic impedances and seismic data , 2009 .

[24]  Alexei Kuvshinov,et al.  3-D Global Induction in the Oceans and Solid Earth: Recent Progress in Modeling Magnetic and Electric Fields from Sources of Magnetospheric, Ionospheric and Oceanic Origin , 2008 .

[25]  K. Shimizu,et al.  The Electrical Conductivity of Post-Perovskite in Earth's D'' Layer , 2008, Science.

[26]  P. Vacher,et al.  Modelling the electrical conductivity of iron-rich minerals for planetary applications , 2007 .

[27]  N. Olsen,et al.  Constraining the composition and thermal state of the mantle beneath Europe from inversion of long‐period electromagnetic sounding data , 2006 .

[28]  Nils Olsen,et al.  A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted, and SAC‐C magnetic data , 2006 .

[29]  H. Mao,et al.  Iron-Rich Post-Perovskite and the Origin of Ultralow-Velocity Zones , 2006, Science.

[30]  Joseph S. Resovsky,et al.  Probabilistic Tomography Maps Chemical Heterogeneities Throughout the Lower Mantle , 2004, Science.

[31]  J. Trampert,et al.  Towards a lower mantle reference temperature and composition , 2004 .

[32]  Xiaoping Wu,et al.  Compensation effect for electrical conductivity and its applications to estimate oxygen diffusivity in minerals , 2003 .

[33]  C. McCammon,et al.  Evidence for ionic conductivity in lower mantle (Mg,Fe)(Si,Al)O3 perovskite , 2002 .

[34]  T. Shankland,et al.  Laboratory‐based electrical conductivity in the Earth's mantle , 2000 .

[35]  J. Poirier Introduction to the Physics of the Earth's Interior: Earth models , 2000 .

[36]  D. Dobson,et al.  The electrical conductivity of the lower mantle phase magnesiowustite at high temperatures and pressures , 2000 .

[37]  J. Poirier,et al.  Dependence on pressure of conduction by hopping of small polarons in minerals of the Earth's lower mantle , 1999 .

[38]  J. Tromp,et al.  Normal-mode and free-Air gravity constraints on lateral variations in velocity and density of Earth's mantle , 1999, Science.

[39]  N. Olsen Long-period (30 days-1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe , 1999 .

[40]  R. Hilst,et al.  Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: toward a hybrid convection model , 1999, Science.

[41]  Xu,et al.  The effect of alumina on the electrical conductivity of silicate perovskite , 1998, Science.

[42]  A. Duba,et al.  Standard electrical conductivity of isotropic, homogeneous olivine in the temperature range 1200°‐1500°C , 1990 .

[43]  J. Poirier,et al.  Electrical conductivity of the Earth's lower mantle , 1989, Nature.

[44]  R. Banks Geomagnetic Variations and the Electrical Conductivity of the Upper Mantle , 1969 .

[45]  S. P. Srivastava,et al.  Theory of the Magnetotelluric Method for a Spherical Conductor , 1966 .

[46]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[47]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[48]  Rolf Landauer,et al.  The Electrical Resistance of Binary Metallic Mixtures , 1952 .

[49]  Amir Khan,et al.  Relationships Between Seismic Wave-Speed, Density, and Electrical Conductivity Beneath Australia from Seismology, Mineralogy, and Laboratory-Based Conductivity Profiles , 2015 .

[50]  F. Deschamps Lower Mantle Electrical Conductivity Inferred from Probabilistic Tomography , 2015 .

[51]  P. Tackley Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects , 2012 .

[52]  Amir Khan,et al.  On the heterogeneous electrical conductivity structure of the Earth’s mantle with implications for transition zone water content , 2011 .