Estimation of the dominant Lyapunov exponent of non-smooth systems on the basis of maps synchronization
暂无分享,去创建一个
[1] Carroll,et al. Synchronization in chaotic systems. , 1990, Physical review letters.
[2] James A. Yorke,et al. Dynamics: Numerical Explorations , 1994 .
[3] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[4] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .
[5] Calculus of iterations and labor-capital core-periphery relative redistribution dynamics , 1994 .
[6] Tomasz Kapitaniak,et al. Using Chaos Synchronization to Estimate the Largest Lyapunov Exponent of Nonsmooth Systems , 2000 .
[7] T. Kapitaniak,et al. MONOTONE SYNCHRONIZATION OF CHAOS , 1996 .
[8] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[9] H. Fujisaka,et al. Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .
[10] Dmitry E. Postnov,et al. SYNCHRONIZATION OF CHAOS , 1992 .
[11] Andrzej Stefański,et al. Estimation of the largest Lyapunov exponent in systems with impacts , 2000 .
[12] Karl Popp,et al. Dynamics of oscillators with impact and friction , 1997 .
[13] P. Müller. Calculation of Lyapunov exponents for dynamic systems with discontinuities , 1995 .
[14] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .