Label‐noise resistant logistic regression for functional data classification with an application to Alzheimer's disease study
暂无分享,去创建一个
[1] Michael I. Jordan,et al. Bayesian parameter estimation via variational methods , 2000, Stat. Comput..
[2] Babak A. Ardekani,et al. Application of fused lasso logistic regression to the study of corpus callosum thickness in early Alzheimer's disease , 2014, Journal of Neuroscience Methods.
[3] M. Victoria-Feser,et al. Robust Logistic Regression for Binomial Responses , 2000 .
[4] Seokho Lee,et al. A biclustering algorithm for binary matrices based on penalized Bernoulli likelihood , 2014, Stat. Comput..
[5] J. Morris. The Clinical Dementia Rating (CDR) , 1993, Neurology.
[6] Hartwig R. Siebner,et al. Corpus Callosum Atrophy in Patients with Mild Alzheimer’s Disease , 2011, Neurodegenerative Diseases.
[7] S. P. Pederson,et al. On Robustness in the Logistic Regression Model , 1993 .
[8] J. Copas. Binary Regression Models for Contaminated Data , 1988 .
[9] Kwang-Ho Ro,et al. Outlier detection for high-dimensional data , 2015 .
[10] Carla E. Brodley,et al. Identifying Mislabeled Training Data , 1999, J. Artif. Intell. Res..
[11] Ana M. Bianco,et al. Robust Estimation in the Logistic Regression Model , 1996 .
[12] Grace Wahba,et al. Spline Models for Observational Data , 1990 .
[13] Enrico Blanzieri,et al. Detecting potential labeling errors in microarrays by data perturbation , 2006, Bioinform..
[14] Jan de Leeuw,et al. Principal component analysis of binary data by iterated singular value decomposition , 2006, Comput. Stat. Data Anal..
[15] S. MacEachern,et al. Regularization of Case-Specific Parameters for Robustness and Efficiency , 2012, 1210.0701.
[16] Babak A. Ardekani,et al. Multi-Atlas Corpus Callosum Segmentation with Adaptive Atlas Selection , 2011 .
[17] Yiyuan She,et al. Outlier Detection Using Nonconvex Penalized Regression , 2010, ArXiv.
[18] Benoît Frénay,et al. A comprehensive introduction to label noise , 2014, ESANN.
[19] Fabrice Muhlenbach,et al. Identifying and Handling Mislabelled Instances , 2004, Journal of Intelligent Information Systems.
[20] Jianhua Z. Huang,et al. SPARSE LOGISTIC PRINCIPAL COMPONENTS ANALYSIS FOR BINARY DATA. , 2010, The annals of applied statistics.
[21] G. Wahba. Spline models for observational data , 1990 .
[22] Paul M. Thompson,et al. Callosal atrophy in mild cognitive impairment and Alzheimer's disease: Different effects in different stages , 2010, NeuroImage.
[23] Yufeng Liu,et al. Robust Truncated Hinge Loss Support Vector Machines , 2007 .
[24] Ata Kabán,et al. Label-Noise Robust Logistic Regression and Its Applications , 2012, ECML/PKDD.
[25] Hans-Paul Schwefel,et al. A comprehensive introduction , 2002 .
[26] Benoît Frénay,et al. A Comprehensive Introduction to Label Noise: Proceedings of the 2014 European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2014) , 2014 .
[27] Yi Lin. A note on margin-based loss functions in classification , 2004 .
[28] R. Defendini,et al. Sexual dimorphism of the human corpus callosum from three independent samples: relative size of the corpus callosum. , 1993, American journal of physical anthropology.
[29] Seo Young Park,et al. Robust penalized logistic regression with truncated loss functions , 2011, Canadian Journal of Statistics-revue Canadienne De Statistique.
[30] Christopher D. Manning,et al. Robust Logistic Regression using Shift Parameters , 2013, ACL.
[31] Hyejin Shin. An extension of Fisher's discriminant analysis for stochastic processes , 2008 .
[32] John G. Csernansky,et al. Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.