Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double-pinch-driven hohlraums

Over the last several years, rapid progress has been made evaluating the double-z-pinch indirect-drive, inertial confinement fusion (ICF) high-yield target concept (Hammer et al 1999 Phys. Plasmas 6 2129). We have demonstrated efficient coupling of radiation from two wire-array-driven primary hohlraums to a secondary hohlraum that is large enough to drive a high yield ICF capsule. The secondary hohlraum is irradiated from two sides by z-pinches to produce low odd-mode radiation asymmetry. This double-pinch source is driven from a single electrical power feed (Cuneo et al 2002 Phys. Rev. Lett. 88 215004) on the 20 MA Z accelerator. The double z-pinch has imploded ICF capsules with even-mode radiation symmetry of 3.1 ± 1.4% and to high capsule radial convergence ratios of 14–21 (Bennett et al 2002 Phys. Rev. Lett. 89 245002; Bennett et al 2003 Phys. Plasmas 10 3717; Vesey et al 2003 Phys. Plasmas 10 1854). Advances in wire-array physics at 20 MA are improving our understanding of z-pinch power scaling with increasing drive current. Techniques for shaping the z-pinch radiation pulse necessary for low adiabat capsule compression have also been demonstrated.

[1]  N. N. Komarov,et al.  Current-induced implosion of a multiwire array as a radial plasma rainstorm , 2003 .

[2]  Haines,et al.  Effect of core-corona plasma structure on seeding of instabilities in wire array Z pinches , 2000, Physical review letters.

[3]  Haines,et al.  Two different modes of nested wire array Z-pinch implosions , 2000, Physical review letters.

[4]  A. Velikovich,et al.  CURRENT SWITCHING AND MASS INTERPENETRATION OFFER ENHANCED POWER FROM NESTED-ARRAY Z PINCHES , 1999 .

[5]  R. Bowers,et al.  Z-Pinch-Generated X Rays Demonstrate Potential for Indirect-Drive ICF Experiments , 1999 .

[6]  R. Spielman,et al.  Two‐dimensional radiation‐magnetohydrodynamic simulations of SATURN imploding Z pinches , 1996 .

[7]  Peter A. Amendt,et al.  Thinshell symmetry surrogates for the National Ignition Facility: A rocket equation analysis , 2001 .

[8]  R. G. Adams,et al.  Z-Beamlet: a multikilojoule, terawatt-class laser system. , 2005, Applied optics.

[9]  R. Spielman,et al.  TIME-DEPENDENT ELECTRON TEMPERATURE DIAGNOSTICS FOR HIGH-POWER, ALUMINUM Z-PINCH PLASMAS , 1997 .

[10]  A. Dangor,et al.  The dynamics of wire array Z-pinch implosions , 1999 .

[11]  M. Cuneo,et al.  Profiled bar transmission gratings: soft-x-ray calibration of new Kirchoff solutions. , 2004, Applied optics.

[12]  J. J. Ramirez,et al.  Theoretical z -pinch scaling relations for thermonuclear-fusion experiments. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  R. Lemke,et al.  Dynamics and characteristics of a 215-eV dynamic-hohlraum x-ray source on Z , 2002 .

[14]  M. Rosen,et al.  Radiation drive in laser‐heated hohlraums , 1996 .

[15]  Farhat Beg,et al.  One-, two-, and three-dimensional modeling of the different phases of wire array Z-pinch evolution , 2001 .

[16]  A. Velikovich,et al.  Fast commutation of high current in double wire array Z-pinch loads , 1997 .

[17]  G. Chandler,et al.  Indirect-drive ICF target concepts for the X-1 Z-pinch facility , 1999 .

[18]  M. Cuneo,et al.  Measurement of the efficiency of gold transmission gratings in the 100 to 5000 eV photon energy range , 2000 .

[19]  D.C. Rovang,et al.  An electromagnetic fast shutter system for debris mitigation on Z , 2001, PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No.01CH37251).

[20]  S. Slutz,et al.  Scaling and optimization of the radiation temperature in dynamic hohlraums , 2001 .

[21]  W. Stygar,et al.  Analytic models of high-temperature hohlraums. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  J. Taylor An Introduction to Error Analysis , 1982 .

[23]  B. Kusse,et al.  Factors affecting energy deposition and expansion in single wire low current experiments , 2004 .

[24]  D. Bliss,et al.  Demonstration of radiation pulse shaping with nested-tungsten-wire-array pinches for high-yield inertial confinement fusion. , 2005, Physical review letters.

[25]  A. Dangor,et al.  Plasma formation and the implosion phase of wire array z -pinch experiments , 2001 .

[26]  James E. Bailey,et al.  Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies , 2003 .

[27]  O L Landen,et al.  Hohlraum-driven high-convergence implosion experiments with multiple beam cones on the omega laser facility. , 2002, Physical review letters.

[28]  G. R. Bennett,et al.  Advances in target design for heavy ion fusion , 2005 .

[29]  J. Porter,et al.  Power enhancement by increasing the initial array radius and wire number of tungsten Z pinches , 1997 .

[30]  W. Stygar,et al.  Radiative properties of high wire number tungsten arrays with implosion times up to 250 ns , 1999 .

[31]  C. Jennings,et al.  Implosion dynamics of wire array Z-pinches: experiments at Imperial College , 2004 .

[32]  G. M. Oleinik,et al.  Prolonged plasma production at current-driven implosion of wire arrays on Angara-5-1 facility , 2002 .

[33]  G. Chandler,et al.  Tungsten wire number dependence of the implosion dynamics at the Z-accelerator , 2005 .

[34]  G. Chandler,et al.  Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ , 1998 .

[35]  G. M. Oleinik,et al.  Dynamics of Heterogeneous Liners with Prolonged Plasma Creation , 2001 .

[36]  N. Roderick,et al.  Evidence and mechanisms of axial-radiation asymmetry in dynamic hohlraums driven by wire-array Z pinches , 2005 .

[37]  G. M. Oleinik,et al.  Experimental and numerical studies of plasma production in the initial stage of implosion of a cylindrical wire array , 2003 .

[38]  Gordon Andrew Chandler,et al.  Measurement of radiation symmetry in Z-pinch-driven hohlraums , 2001 .

[39]  D. L. Fehl,et al.  Fast resistive bolometry , 1998 .

[40]  M. Matzen Z pinches as intense x-ray sources for high-energy density physics applications , 1997 .

[41]  C. Coverdale,et al.  Spectroscopic diagnosis of nested-wire-array dynamics and interpenetration at 7 MA. , 2004, Physical review letters.

[42]  Bell,et al.  Plasma formation in metallic wire Z pinches , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  Gordon Andrew Chandler,et al.  Filtered x-ray diode diagnostics fielded on the Z accelerator for source power measurements , 1998 .

[44]  John Lindl,et al.  A generalized scaling law for the ignition energy of inertial confinement fusion capsules , 2000 .

[45]  R. Bowers,et al.  Insights and applications of two-dimensional simulations to Z-pinch experiments , 1999 .

[46]  K. H. Kwek,et al.  Effect of discrete wires on the implosion dynamics of wire array Z pinches , 2001 .

[47]  M. Cuneo,et al.  Equilibrium flow structures and scaling of implosion trajectories in wire array Z pinches , 2004 .

[48]  R. G. Adams,et al.  Symmetric inertial-confinement-fusion-capsule implosions in a double-z-pinch-driven hohlraum. , 2002, Physical review letters.

[49]  T. Sanford,et al.  Wire-array z-pinch: a powerful x-ray source for ICF , 2005 .

[50]  E. Yadlowsky,et al.  Evidence for precursor plasma formation resulting from heterogeneous current channels in wire array loads , 1996 .

[51]  R. G. Adams,et al.  Demonstration of radiation symmetry control for inertial confinement fusion in double Z-pinch hohlraums. , 2003, Physical review letters.

[52]  G. Chandler,et al.  Current scaling of radiated power for 40-mm diameter single wire arrays on Z , 2004 .

[53]  D. Bliss,et al.  Direct experimental evidence for current-transfer mode operation of nested tungsten wire arrays at 16-19 MA. , 2005, Physical review letters.

[54]  S. Slutz,et al.  Hot dense capsule-implosion cores produced by Z-pinch dynamic Hohlraum radiation. , 2003, Physical review letters.

[55]  N. Roderick,et al.  Increased x-ray power generated from low-mass large-number aluminum-wire-array Z-pinch implosions , 1998 .

[56]  G. R. Bennett,et al.  Characteristics and scaling of tungsten-wire-array z -pinch implosion dynamics at 20 MA. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  R. Lemke,et al.  Wire array implosion characteristics from determination of load inductance on the Z pulsed-power accelerator , 2004 .

[58]  C. Jennings,et al.  X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches , 2004 .

[59]  A. Velikovich,et al.  Stabilized radiative Z-pinch loads with tailored density profiles , 1998 .

[60]  Peter A. Amendt,et al.  A simple time-dependent analytic model of the P2 asymmetry in cylindrical hohlraums , 1999 .

[61]  G. R. Bennett,et al.  Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions. , 2002, Physical review letters.

[62]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[63]  S. Slutz,et al.  Production of Thermonuclear Neutrons from Deuterium-Filled Capsule Implosions Driven by Z-Pinch Dynamic Hohlraums , 2004 .

[64]  Gordon Andrew Chandler,et al.  Development and Characterization of a Z-Pinch Driven Hohlraum High-Yield Inertial Confinement Fusion Target Concept , 2001 .

[65]  C. Coverdale,et al.  Optimal wire-number range for high x-ray power in long-implosion-time aluminum Z pinches. , 2002, Physical review letters.

[66]  A. Dangor,et al.  Snowplow-like behavior in the implosion phase of wire array Z pinches , 2002 .

[67]  Michael Edward Cuneo,et al.  Heavy-ion target physics and design in the USA , 2005 .

[68]  M. Cuneo,et al.  Zero-dimensional energetics scaling models for z-pinch-driven hohlraums , 2001 .

[69]  Gordon Andrew Chandler,et al.  Soft x-ray measurements of z-pinch-driven vacuum hohlraums , 1999 .

[70]  Mosher,et al.  Improved Symmetry Greatly Increases X-Ray Power from Wire-Array Z-Pinches. , 1996, Physical review letters.

[71]  R. Bowers,et al.  Radiation environments produced by plasma z-pinch stagnation on central targets , 1998 .

[72]  R. Bowers,et al.  Characterization of energy flow and instability development in two-dimensional simulations of hollow z pinches , 1998 .

[73]  R. G. Adams,et al.  Radiation symmetry control for inertial confinement fusion capsule implosions in double Z-pinch hohlraums on Z , 2003 .

[74]  R. G. Adams,et al.  Symmetric inertial confinement fusion capsule implosions in a high-yield-scale double-Z-pinch-driven hohlraum on Z , 2003 .

[75]  Kenneth W. Struve,et al.  Enhancement of X-Ray Power from a Z Pinch Using Nested-Wire Arrays , 1998 .

[76]  J. J. Ramirez,et al.  X-ray emission from z pinches at 10 7 A: current scaling, gap closure, and shot-to-shot fluctuations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  D. S. Bailey,et al.  High yield inertial confinement fusion target design for a z-pinch-driven hohlraum , 1999 .

[78]  J. Porter,et al.  High sensitivity neutron detector for Z , 2004 .

[79]  A. Dangor,et al.  Azimuthal Structure and Global Instability in the Implosion Phase of Wire Array Z-Pinch Experiments , 1998 .

[80]  N. Roderick,et al.  The effect of load thickness on the performance of high velocity, annular Z-pinch implosions , 2001 .

[81]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[82]  A. Nikroo,et al.  Fabrication of capsules with angle-dependent gold shims for hohlraum drive symmetry correction , 2005 .

[83]  L. P. Mix,et al.  Charge-state distribution and Doppler effect in an expanding photoionized plasma. , 2004, Physical review letters.

[84]  J. Porter,et al.  Measurement and simulation of apertures on Z hohlraums , 1998 .

[85]  G. M. Oleinik,et al.  X-ray backlighting of the periphery of an imploding multiwire array in the Angara-5-1 facility , 2004 .

[86]  R. Bowers,et al.  Dynamics of a Z-pinch x-ray source for heating inertial-confinement-fusion relevant hohlraums to 120–160 eV , 2000 .

[87]  R. Bowers,et al.  High-temperature dynamic hohlraums on the pulsed power driver Z , 1998 .

[88]  Davis,et al.  Buoyant magnetic flux tubes enhance radiation in Z pinches , 2000, Physical review letters.

[89]  M. Rosen The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial , 1999 .

[90]  N. Rostoker,et al.  Dense Z-pinches , 1989 .

[91]  J. Chittenden,et al.  Plasma Formation and Implosion Structure in Wire Array Z Pinches , 1999 .

[92]  V. Smirnov Fast liners for inertial fusion , 1991 .

[93]  D. Ryutov,et al.  The physics of fast Z pinches , 1998 .

[94]  Characterization of diagnostic hole-closure in Z-pinch driven hohlraums , 2000 .

[95]  J. Porter,et al.  Streaked laser shadowgraphy of tungsten wire array implosions on the Saturn generator , 1997 .

[96]  D. Bliss,et al.  Progress in z-pinch driven dynamic-hohlraums for high-temperature radiation-flow and ICF experiments at Sandia National Laboratories , 2004 .

[97]  G. R. Bennett,et al.  Dynamic hohlraum driven inertial fusion capsules , 2002 .

[98]  G. R. Bennett,et al.  Monochromatic x-ray imaging experiments on the Sandia National Laboratories Z facility (invited) , 2004 .

[99]  P. Peterson,et al.  Low mass recyclable transmission lines for Z-pinch driven inertial fusion , 2003 .

[100]  G. Chandler,et al.  Optimization of power density by decreasing the length of tungsten wire array Z pinches , 1998 .

[101]  D. Bliss,et al.  Mass-profile and instability-growth measurements for 300-wire Z-pinch implosions driven by 14-18 MA. , 2004, Physical review letters.

[102]  John L. Porter,et al.  X-ray imaging techniques on Z using the Z-Beamlet laser , 2001 .

[103]  R. Olson Target Physics Scaling for Z-Pinch Inertial Fusion Energy , 2005 .

[104]  A. E. Dangor,et al.  The past, present, and future of Z pinches* , 2000 .

[105]  B. G. Logan,et al.  The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme , 2003 .

[106]  P. Calderoni,et al.  Development Path for Z-Pinch IFE , 2005 .

[107]  C. Jennings,et al.  Nested wire array Z-pinch experiments operating in the current transfer mode , 2003 .

[108]  R. G. Adams,et al.  Pulsed-power-driven high energy density physics and inertial confinement fusion research , 2004 .

[109]  G. R. Bennett,et al.  X-ray imaging measurements of capsule implosions driven by a Z-pinch dynamic hohlraum. , 2002, Physical review letters.

[110]  A Nobile,et al.  Preheat effects on shock propagation in indirect-drive inertial confinement fusion ablator materials. , 2003, Physical review letters.

[111]  D. Bliss,et al.  Measurements of the mass distribution and instability growth for wire-array Z-pinch implosions driven by 14-20 MAa) , 2004 .

[112]  S. Lebedev,et al.  Two- and three-dimensional modeling of the different phases of wire-array z -pinch evolution , 2001 .

[113]  D. Bliss,et al.  Multi-dimensional high energy density physics modeling and simulation of wire array Z-pinch physics , 2004 .

[114]  M. Haines A three-dimensional model of wire array instability, ablation, and jetting , 2002 .