Numerical modeling of friction stir welding process: a literature review

This survey presents a literature review on friction stir welding (FSW) modeling with a special focus on the heat generation due to the contact conditions between the FSW tool and the workpiece. The physical process is described and the main process parameters that are relevant to its modeling are highlighted. The contact conditions (sliding/sticking) are presented as well as an analytical model that allows estimating the associated heat generation. The modeling of the FSW process requires the knowledge of the heat loss mechanisms, which are discussed mainly considering the more commonly adopted formulations. Different approaches that have been used to investigate the material flow are presented and their advantages/drawbacks are discussed. A reliable FSW process modeling depends on the fine tuning of some process and material parameters. Usually, these parameters are achieved with base on experimental data. The numerical modeling of the FSW process can help to achieve such parameters with less effort and with economic advantages.

[1]  David H. Lammlein Friction stir welding of spheres, cylinders, and T-joints: Design, experiment, modelling, and analysis , 2010 .

[2]  Radovan Kovacevic,et al.  Finite element modeling of friction stir welding—thermal and thermomechanical analysis , 2003 .

[3]  S. Guerdoux,et al.  A 3D numerical simulation of different phases of friction stir welding , 2009 .

[4]  Jamil A. Khan,et al.  Prediction of temperature distribution and thermal history during friction stir welding: input torque based model , 2003 .

[5]  Mohammad Riahi,et al.  Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation , 2011 .

[6]  Arthur C. Nunes,et al.  Interfacial sticking and slipping in the friction stir welding process , 2006 .

[7]  Jamil A. Khan,et al.  Thermal Modeling of Overlap Friction Stir Welding for Al-Alloys , 2001 .

[8]  Paul A. Colegrove,et al.  3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile , 2005 .

[9]  Florin Paun,et al.  Thermo‐mechanical History of a Friction Stir Welded Plate; Influence of the Mechanical Loading on the Residual Stress Distribution , 2004 .

[10]  Jesper Henri Hattel,et al.  An analytical model for the heat generation in friction stir welding , 2004 .

[11]  David H. Lammlein,et al.  Computational Modeling of Friction Stir Welding , 2009 .

[12]  Aníbal N. Cassanelli,et al.  Numerical modeling of welded joints by the "Friction Stir Welding" process , 2004 .

[13]  Patrick Ulysse,et al.  Three-dimensional modeling of the friction stir-welding process , 2002 .

[14]  H. Schmidt,et al.  A local model for the thermomechanical conditions in friction stir welding , 2004 .

[15]  Paul A. Colegrove,et al.  Experimental and numerical analysis of aluminium alloy 7075-T7351 friction stir welds , 2003 .

[16]  H. Bhadeshia,et al.  Recent advances in friction-stir welding : Process, weldment structure and properties , 2008 .

[17]  Y. J. Chao,et al.  Numerical simulation of transient temperature and residual stresses in friction stir welding of 304 L stainless steel , 2004 .

[18]  Christophe Desrayaud,et al.  A simple Eulerian thermomechanical modeling of friction stir welding , 2011 .

[19]  Simon Guerdoux,et al.  Numerical simulation of the friction stir welding process , 2004 .

[20]  富村 寿夫,et al.  Friction Stir Welding(摩擦撹拌接合)法の熱工学的研究 , 2005 .

[21]  Z. Zhang,et al.  Comparison of two contact models in the simulation of friction stir welding process , 2008 .

[22]  A. Rosakis,et al.  A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals , 2000 .

[23]  Øystein Grong,et al.  A process model for friction stir welding of age hardening aluminum alloys , 2001 .

[24]  A. Reynolds,et al.  Finite element simulation of material flow in friction stir welding , 2001 .

[25]  Carter Hamilton,et al.  A thermal model of friction stir welding in aluminum alloys , 2008 .

[26]  J. Huetink,et al.  Comparison of ALE finite element method and adaptive smoothed finite element method for the numerical simulation of friction stir welding , 2011 .

[27]  Lawrence E Murr,et al.  Heat input and temperature distribution in friction stir welding , 1998 .

[28]  Jesper Henri Hattel,et al.  Modelling heat flow around tool probe in friction stir welding , 2005 .

[29]  Yuh J. Chao,et al.  Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel , 2004 .

[30]  Jesper Henri Hattel,et al.  Thermal modelling of friction stir welding , 2008 .

[31]  Luís Menezes,et al.  Improving Computational Performance through HPC Techniques: case study using DD3IMP in‐house code , 2011 .

[32]  Paul A. Colegrove,et al.  Development of Trivex friction stir welding tool Part 2 – three-dimensional flow modelling , 2004 .

[33]  Lionel Fourment,et al.  Accurate 3D friction stir welding simulation tool based on friction model calibration , 2009 .

[34]  R. Nandan,et al.  Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding , 2006 .

[35]  S ZijlstraEeuwe,et al.  Goedecker‐Teter‐Hutter擬ポテンシャルに対し最適なGauss基底系 , 2009 .

[36]  J. A. Schneider,et al.  Characterization of plastic flow and resulting microtextures in a friction stir weld , 2004 .

[37]  T. Pardoen,et al.  Effect of boundary conditions and heat source distribution on temperature distribution in friction stir welding , 2006 .

[38]  R. Mishraa,et al.  Friction Stir Welding And Processing , 2005 .

[39]  Alma H. Oliphant Numerical Modeling of Friction Stir Welding: A Comparison of Alegra and Forge3 , 2004 .

[40]  T. Pardoen,et al.  Effect of rotational material flow on temperature distribution in friction stir welds , 2007 .

[41]  Paul A. Colegrove,et al.  Two-dimensional CFD modelling of flow round profiled FSW tooling , 2004 .