CVaR (superquantile) norm: Stochastic case
暂无分享,去创建一个
[1] R. Rockafellar,et al. Optimization of conditional value-at risk , 2000 .
[2] P. Rousseeuw. Least Median of Squares Regression , 1984 .
[3] Rachel Wells Hall,et al. Submajorization and the Geometry of Unordered Collections , 2012, Am. Math. Mon..
[4] Wlodzimierz Ogryczak,et al. Conditional Median: A Parametric Solution Concept for Location Problems , 2002, Ann. Oper. Res..
[5] Stan Uryasev,et al. CVaR norm and applications in optimization , 2014, Optim. Lett..
[6] Douglas M. Hawkins,et al. Applications and algorithms for least trimmed sum of absolute deviations regression , 1999 .
[7] PETER J. ROUSSEEUW,et al. Computing LTS Regression for Large Data Sets , 2005, Data Mining and Knowledge Discovery.
[8] S. Sarna,et al. [Regression models]. , 1988, Duodecim; laaketieteellinen aikakauskirja.
[9] Vicenç Torra,et al. Modeling decisions - information fusion and aggregation operators , 2007 .
[10] G. Pflug. Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk , 2000 .
[11] Ronald R. Yager,et al. Norms Induced from OWA Operators , 2010, IEEE Transactions on Fuzzy Systems.
[12] José M. Merigó,et al. Norm Aggregations and OWA Operators , 2013, AGOP.
[13] O. Hössjer. Rank-Based Estimates in the Linear Model with High Breakdown Point , 1994 .
[14] Yinyu Ye,et al. A note on the complexity of Lp minimization , 2011, Math. Program..
[15] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[16] Stan Uryasev,et al. Generalized deviations in risk analysis , 2004, Finance Stochastics.
[17] Wlodzimierz Ogryczak,et al. Dual Stochastic Dominance and Related Mean-Risk Models , 2002, SIAM J. Optim..
[18] Johannes O. Royset,et al. On buffered failure probability in design and optimization of structures , 2010, Reliab. Eng. Syst. Saf..
[19] Melvyn Sim,et al. Robust linear optimization under general norms , 2004, Oper. Res. Lett..
[20] Arvind Kumar,et al. A Column Generation Approach to Radiation Therapy Treatment Planning Using Aperture Modulation , 2005, SIAM J. Optim..
[21] R. Koenker,et al. Regression Quantiles , 2007 .
[22] I. Olkin,et al. Inequalities: Theory of Majorization and Its Applications , 1980 .
[23] Stan Uryasev,et al. Risk Tuning With Generalized Linear Regression , 2007, Math. Oper. Res..
[24] Peter Filzmoser,et al. The least trimmed quantile regression , 2012, Comput. Stat. Data Anal..
[25] R. Rockafellar,et al. Conditional Value-at-Risk for General Loss Distributions , 2001 .
[26] R. Rockafellar,et al. The fundamental risk quadrangle in risk management, optimization and statistical estimation , 2013 .
[27] Gilbert W. Bassett. Equivariant, Monotonic, 50% Breakdown Estimators , 1991 .
[28] Stan Uryasev,et al. Two pairs of families of polyhedral norms versus $$\ell _p$$ℓp-norms: proximity and applications in optimization , 2016, Math. Program..
[29] Darinka Dentcheva,et al. Optimization with Stochastic Dominance Constraints , 2003, SIAM J. Optim..
[30] Adam Krzemienowski,et al. Risk preference modeling with conditional average: an application to portfolio optimization , 2009, Ann. Oper. Res..
[31] George W. Bohrnstedt,et al. OF RANDOM VARIABLES , 2016 .