Characterization of novel genomic alterations and therapeutic approaches using acute megakaryoblastic leukemia xenograft models

A CBFA2T3-GLIS2 fusion gene was identified in 31% of non–Down syndrome AMKL.

[1]  Anne E Carpenter,et al.  Identification of Regulators of Polyploidization Presents Therapeutic Targets for Treatment of AMKL , 2012, Cell.

[2]  J. Crispino,et al.  Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome. , 2012, The Journal of clinical investigation.

[3]  H. S. Kang,et al.  Gli-similar proteins: their mechanisms of action, physiological functions, and roles in disease. , 2012, Vitamins and hormones.

[4]  S. Salzberg,et al.  TopHat-Fusion: an algorithm for discovery of novel fusion transcripts , 2011, Genome Biology.

[5]  Yi Zhang,et al.  The diverse functions of Dot1 and H3K79 methylation. , 2011, Genes & development.

[6]  Süleyman Cenk Sahinalp,et al.  deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data , 2011, PLoS Comput. Biol..

[7]  H. S. Kang,et al.  Identification of Nuclear Localization, DNA Binding, and Transactivating Mechanisms of Krüppel-like Zinc Finger Protein Gli-Similar 2 (Glis2)* , 2010, The Journal of Biological Chemistry.

[8]  H. S. Kang,et al.  Gli-similar (Glis) Krüppel-like zinc finger proteins: insights into their physiological functions and critical roles in neonatal diabetes and cystic renal disease. , 2010, Histology and histopathology.

[9]  T. Liehr,et al.  Complex karyotype defined by molecular cytogenetic FISH and M-FISH in an infant with acute megakaryoblastic leukemia and neurofibromatosis. , 2010, Cancer genetics and cytogenetics.

[10]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[11]  P. Vyas,et al.  Acute megakaryoblastic leukaemia (AMKL) and transient myeloproliferative disorder (TMD) in Down syndrome: a multi‐step model of myeloid leukaemogenesis , 2009, British journal of haematology.

[12]  J. Downing,et al.  Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia , 2009, Proceedings of the National Academy of Sciences.

[13]  Y. Hayashi,et al.  Acute megakaryoblastic leukemia in a child with the MLL‐AF4 fusion gene , 2009, European journal of haematology.

[14]  Michael G. Kharas,et al.  Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis. , 2009, Cell stem cell.

[15]  R. Taichman,et al.  Hedgehog signaling is dispensable for adult hematopoietic stem cell function. , 2009, Cell stem cell.

[16]  Y. Lan,et al.  Sonic hedgehog signaling regulates reciprocal epithelial-mesenchymal interactions controlling palatal outgrowth , 2009, Development.

[17]  Dinshaw J. Patel,et al.  Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger , 2009, Nature.

[18]  Sandra A. Moore,et al.  The OTT-MAL fusion oncogene activates RBPJ-mediated transcription and induces acute megakaryoblastic leukemia in a knockin mouse model. , 2009, The Journal of clinical investigation.

[19]  S. Izraeli,et al.  Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. , 2009, Blood.

[20]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[21]  A. Baruchel,et al.  Activating mutations in human acute megakaryoblastic leukemia. , 2008, Blood.

[22]  A. Puisieux,et al.  BMP4 regulation of human megakaryocytic differentiation is involved in thrombopoietin signaling. , 2008, Blood.

[23]  J. Collins,et al.  Krüppel-Like Zinc Finger Protein Glis2 Is Essential for the Maintenance of Normal Renal Functions , 2008, Molecular and Cellular Biology.

[24]  D. Seelow,et al.  Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis , 2007, Nature Genetics.

[25]  W. Vainchenker,et al.  Transfer of differentiation signal by membrane microvesicles harboring hedgehog morphogens. , 2006, Blood.

[26]  Sandra A. Moore,et al.  JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. , 2006, Blood.

[27]  Sandra A. Moore,et al.  Activating alleles of JAK3 in acute megakaryoblastic leukemia. , 2006, Cancer cell.

[28]  Sandra A. Moore,et al.  MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia , 2006, PLoS medicine.

[29]  A. Veronese,et al.  Identification of NUP98 abnormalities in acute leukemia: JARID1A (12p13) as a new partner gene , 2006, Genes, chromosomes & cancer.

[30]  Aravind Subramanian,et al.  Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  E. Estey,et al.  JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. , 2005, Blood.

[32]  C. Rosanda,et al.  MLL-MLLT10 fusion gene in pediatric acute megakaryoblastic leukemia. , 2005, Leukemia research.

[33]  T. Yamagata,et al.  Runx1/AML1 in Normal and Abnormal Hematopoiesis , 2005, International journal of hematology.

[34]  S. Orkin,et al.  Developmental stage–selective effect of somatically mutated leukemogenic transcription factor GATA1 , 2005, Nature Genetics.

[35]  Stefan N. Constantinescu,et al.  A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera , 2005, Nature.

[36]  James Douglas Engel,et al.  Gata2 specifies serotonergic neurons downstream of sonic hedgehog , 2004, Development.

[37]  R. Paredes-Aguilera,et al.  Biology, clinical, and hematologic features of acute megakaryoblastic leukemia in children , 2003, American journal of hematology.

[38]  R. Berger,et al.  A novel real-time RT-PCR assay for quantification of OTT-MAL fusion transcript reliable for diagnosis of t(1;22) and minimal residual disease (MRD) detection , 2003, Leukemia.

[39]  J. Davis,et al.  The ETO (MTG8) gene family. , 2003, Gene.

[40]  M. L. Beau,et al.  Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome , 2002, Nature Genetics.

[41]  R. Berger,et al.  Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): a study of the Groupe Français de Cytogénétique Hématologique (GFCH). , 2002, Blood.

[42]  Z. Estrov,et al.  CD56 expression predicts occurrence of CNS disease in acute lymphoblastic leukemia. , 2002, Leukemia research.

[43]  R. Berger,et al.  Recurrence of OTT–MAL fusion in t(1;22) of infant AML‐M7 , 2002, Genes, chromosomes & cancer.

[44]  Dean Nizetic,et al.  Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia , 2001, Nature Genetics.

[45]  Nicole Dastugue,et al.  Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[46]  N. Zeleznik-Le,et al.  Establishment and characterization of a megakaryoblast cell line with amplification of MLL , 1998, Leukemia.

[47]  A. Borkhardt,et al.  A novel type of MLL/AF10 fusion transcript in a child with acute megakaryocytic leukemia (AML-M7) , 1995, Leukemia.

[48]  T. Lion,et al.  The translocation t(1;22)(p13;q13) is a nonrandom marker specifically associated with acute megakaryocytic leukemia in young children. , 1992, Blood.