Approximating the leading singular triplets of a large matrix function
暂无分享,去创建一个
[1] Charles William Gear,et al. Numerical Solution of Ordinary Differential Equations: Is There Anything Left to Do? , 1981 .
[2] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[3] Vladimir Druskin,et al. Solution of Large Scale Evolutionary Problems Using Rational Krylov Subspaces with Optimized Shifts , 2009, SIAM J. Sci. Comput..
[4] Valeria Simoncini,et al. Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..
[5] Michele Benzi,et al. Decay Properties of Spectral Projectors with Applications to Electronic Structure , 2012, SIAM Rev..
[6] Z. Strakos,et al. Krylov Subspace Methods: Principles and Analysis , 2012 .
[7] Marlis Hochbruck,et al. Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..
[8] Emanuel H. Rubensson. Controlling Errors in Recursive Fermi-Dirac Operator Expansions with Applications in Electronic Structure Theory , 2012, SIAM J. Sci. Comput..
[9] R. Larsen. Lanczos Bidiagonalization With Partial Reorthogonalization , 1998 .
[10] Valérie Frayssé,et al. Inexact Matrix-Vector Products in Krylov Methods for Solving Linear Systems: A Relaxation Strategy , 2005, SIAM J. Matrix Anal. Appl..
[11] Marlis Hochbruck,et al. Exponential Integrators for Quantum-Classical Molecular Dynamics , 1999 .
[12] Stefan Güttel,et al. Convergence of Restarted Krylov Subspace Methods for Stieltjes Functions of Matrices , 2014, SIAM J. Matrix Anal. Appl..
[13] B. Baxter. Norm Estimates for Inverses of Toeplitz Distance Matrices , 1994 .
[14] L. Trefethen,et al. Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .
[15] G. Watson. Computing the numerical radius , 1996 .
[16] Oliver G. Ernst,et al. A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..
[17] D. Choi. Estimating Norms of Matrix Functions using Numerical Ranges , 2013 .
[18] Nicholas J. Higham,et al. Estimating the Condition Number of the Fréchet Derivative of a Matrix Function , 2014, SIAM J. Sci. Comput..
[19] L. Trefethen. Spectra and pseudospectra , 2005 .
[20] M. Overton,et al. Algorithms for the computation of the pseudospectral radius and the numerical radius of a matrix , 2005 .
[21] Gene H. Golub,et al. Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.
[22] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[23] Michel Crouzeix,et al. Numerical range and functional calculus in Hilbert space , 2007 .
[24] Valeria Simoncini,et al. Variable Accuracy of Matrix-Vector Products in Projection Methods for Eigencomputation , 2005, SIAM J. Numer. Anal..
[25] L. Knizhnerman,et al. Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..
[26] J. Cullum,et al. Lanczos algorithms for large symmetric eigenvalue computations , 1985 .
[27] S. Güttel. Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .
[28] K. Gustafson,et al. Numerical Range: The Field Of Values Of Linear Operators And Matrices , 1996 .
[29] Emanuel H. Rubensson,et al. On the condition number and perturbation of matrix functions for Hermitian matrices , 2012, 1206.1762.
[30] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[31] Valeria Simoncini,et al. A new investigation of the extended Krylov subspace method for matrix function evaluations , 2009, Numer. Linear Algebra Appl..
[32] Michael I. Gil. PERTURBATIONS OF FUNCTIONS OF DIAGONALIZABLE MATRICES , 2010 .
[33] R. Bhatia,et al. Norm inequalities related to the matrix geometric mean , 2012, 1502.04497.
[34] B. A. Schmitt. Norm bounds for rational matrix functions , 1983 .
[35] J. Cullum,et al. Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. 1 , 2002 .
[36] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[37] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[38] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[39] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[40] Gene H. Golub,et al. Matrix computations , 1983 .
[41] N. Higham. Functions of Matrices: Theory and Computation (Other Titles in Applied Mathematics) , 2008 .