Improvement of Modal Matching Image Objects in Dynamic Pedobarography Using Optimization Techniques

The paper presents an approach for matching objects in dynamic pedobarography image sequences, based on finite element modeling and modal analysis. The determination of correspondences between objects’ nodes is here improved using optimization techniques and, because the elements number of each object is not necessarily the same, a new algorithm to match excess nodes is proposed. This new matching algorithm uses a neighborhood criterion and can overcome some disadvantages that the usual matching “one to one” in various applications can have. The proposed approach allows the determination of correspondences between 2D or 3D objects and will be here considered in dynamic pedobarography images.

[1]  William J. Schroeder,et al.  The Visualization Toolkit , 2005, The Visualization Handbook.

[2]  João Paulo Costeira,et al.  A Global Solution to Sparse Correspondence Problems , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[4]  S. Graham Kelly,et al.  Fundamentals of Mechanical Vibrations , 1992 .

[5]  Maria Lourença Ferreira de Bastos,et al.  Optimização da determinação das correspondências entre objectos deformáveis no espaço modal : [Tese de Mestrado] , 2002 .

[6]  João Manuel R. S. Tavares,et al.  Matching image objects in dynamic pedobarography , 2000 .

[7]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  K. Bathe Finite Element Procedures , 1995 .

[9]  J. Tavares,et al.  Optimization in modal matching for correspondence of objects nodal points , 2003 .

[10]  João Manuel R. S. Tavares,et al.  Apresentação de um Banco de Desenvolvimento e Ensaio para Objectos Deformáveis , 2009 .

[11]  Timothy F. Cootes,et al.  Modelling Object Appearance using The Grey-Level Surface , 1994, BMVC.

[12]  Jin-Jang Leou,et al.  A bipartite matching approach to feature correspondence in stereo vision , 1995, Pattern Recognit. Lett..

[13]  R. Faure,et al.  Introduction to operations research , 1968 .

[14]  João Manuel R. S. Tavares,et al.  Análise de movimento de corpos deformáveis usando visão computacional , 2000 .

[15]  Paolo Toth,et al.  Algorithms and codes for dense assignment problems: the state of the art , 2000, Discret. Appl. Math..

[16]  Ingemar J. Cox,et al.  A maximum-flow formulation of the N-camera stereo correspondence problem , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[17]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Eric Backer,et al.  Finding point correspondences using simulated annealing , 1995, Pattern Recognit..

[19]  Eric Mjolsness,et al.  New Algorithms for 2D and 3D Point Matching: Pose Estimation and Correspondence , 1998, NIPS.

[20]  Alex Pentland,et al.  Bayesian face recognition using deformable intensity surfaces , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  A. Volgenant Linear and semi-assignment problems: A core oriented approach , 1996, Comput. Oper. Res..

[22]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.