Atmospheric Science with InSight

In November 2018, for the first time a dedicated geophysical station, the InSight lander, will be deployed on the surface of Mars. Along with the two main geophysical packages, the Seismic Experiment for Interior Structure (SEIS) and the Heat-Flow and Physical Properties Package (HP3), the InSight lander holds a highly sensitive pressure sensor (PS) and the Temperature and Winds for InSight (TWINS) instrument, both of which (along with the InSight FluxGate (IFG) Magnetometer) form the Auxiliary Sensor Payload Suite (APSS). Associated with the RADiometer (RAD) instrument which will measure the surface brightness temperature, and the Instrument Deployment Camera (IDC) which will be used to quantify atmospheric opacity, this will make InSight capable to act as a meteorological station at the surface of Mars. While probing the internal structure of Mars is the primary scientific goal of the mission, atmospheric science remains a key science objective for InSight. InSight has the potential to provide a more continuous and higher-frequency record of pressure, air temperature and winds at the surface of Mars than previous in situ missions. In the paper, key results from multiscale meteorological modeling, from Global Climate Models to Large-Eddy Simulations, are described as a reference for future studies based on the InSight measurements during operations. We summarize the capabilities of InSight for atmospheric observations, from profiling during Entry, Descent and Landing to surface measurements (pressure, temperature, winds, angular momentum), and the plans for how InSight’s sensors will be used during operations, as well as possible synergies with orbital observations. In a dedicated section, we describe the seismic impact of atmospheric phenomena (from the point of view of both “noise” to be decorrelated from the seismic signal and “signal” to provide information on atmospheric processes). We discuss in this framework Planetary Boundary Layer turbulence, with a focus on convective vortices and dust devils, gravity waves (with idealized modeling), and large-scale circulations. Our paper also presents possible new, exploratory, studies with the InSight instrumentation: surface layer scaling and exploration of the Monin-Obukhov model, aeolian surface changes and saltation / lifing studies, and monitoring of secular pressure changes. The InSight mission will be instrumental in broadening the knowledge of the Martian atmosphere, with a unique set of measurements from the surface of Mars.

[1]  Ralph D. Lorenz,et al.  Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion , 2017 .

[2]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[3]  A. Toigo,et al.  An Investigation of Dust Storms Observed with the Mars Color Imager , 2017 .

[4]  Richard M. Lueptow,et al.  Atmospheric acoustics of Titan, Mars, Venus, and Earth , 2007 .

[5]  V. Dehant,et al.  Lander radio science experiment with a direct link between Mars and the Earth , 2012 .

[6]  G. Landis,et al.  Gusev Crater, Mars: Observations of three dust devil seasons , 2010 .

[7]  Jeffrey R. Johnson,et al.  The rocks of Gusev Crater as viewed by the Mini‐TES instrument , 2006 .

[8]  J. Tromp,et al.  Analysis of Regolith Properties Using Seismic Signals Generated by InSight’s HP3 Penetrator , 2017 .

[9]  M. Lemmon,et al.  Atmospheric dynamics at the Phoenix landing site as seen by the Surface Stereo Imager , 2010 .

[10]  R. Lorenz Heuristic Estimation of Dust Devil Vortex Parameters and Trajectories from Single-Station Meteorological Observations : Application to InSight at Mars. , 2016, Icarus.

[11]  S. Larsen,et al.  The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. , 1997, Science.

[12]  M. Klose,et al.  Particle Lifting Processes in Dust Devils , 2016 .

[13]  William M. Farrell,et al.  Electric and magnetic signatures of dust devils from the 2000–2001 MATADOR desert tests , 2004 .

[14]  A. Trebi-Ollennu,et al.  Geology and Physical Properties Investigations by the InSight Lander , 2018, Space Science Reviews.

[15]  A. Mocquet,et al.  Statistical redundancy of instantaneous phases: Theory and application to the seismic ambient wavefield , 2016 .

[16]  Jeffrey R. Barnes,et al.  Mesoscale and large‐eddy simulation model studies of the Martian atmosphere in support of Phoenix , 2008 .

[17]  Conway B. Leovy,et al.  Diurnal Variations of the Martian Surface Layer Meteorological Parameters During the First 45 Sols at Two Viking Lander Sites , 1978 .

[18]  Pierre Gentine,et al.  Coupling between radiative flux divergence and turbulence near the surface , 2018, Quarterly Journal of the Royal Meteorological Society.

[19]  A. Spiga,et al.  The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations , 2014 .

[20]  L. Landberg,et al.  The Boundary Layer of Mars: Fluxes, Stability, Turbulent Spectra, and Growth of the Mixed Layer , 1994 .

[21]  M C Malin,et al.  Observational Evidence for an Active Surface Reservoir of Solid Carbon Dioxide on Mars , 2001, Science.

[22]  M. Malin,et al.  Climate, weather, and north polar observations from the Mars Reconnaissance Orbiter Mars Color Imager , 2008 .

[23]  R. Haberle,et al.  Detection of Northern Hemisphere transient eddies at Gale Crater Mars , 2018, Icarus.

[24]  Stephen R. Lewis,et al.  Correction to: ‘Structure and dynamics of the convective boundary layer on Mars as inferred from large‐eddy simulations and remote‐sensing measurements’ , 2010 .

[25]  Véronique Dehant,et al.  Atmospheric angular momentum variations of Earth, Mars and Venus at seasonal time scales , 2011 .

[26]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[27]  P. Taylor,et al.  Initial analysis of air temperature and related data from the Phoenix MET station and their use in estimating turbulent heat fluxes , 2010 .

[28]  Agustin Sanchez-Lavega,et al.  A systematic search of sudden pressure drops on Gale crater during two Martian years derived from MSL/REMS data , 2018 .

[29]  H. Savijärvi A model study of the atmospheric boundary layer in the Mars pathfinder lander conditions , 1999 .

[30]  M. Lemmon,et al.  Convective vortices and dust devils at the MSL landing site: Annual variability , 2016 .

[31]  M. D. Smith,et al.  The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity , 2017 .

[32]  M. Richardson,et al.  The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011) , 2015 .

[33]  R. Haberle,et al.  Detecting secular climate change on Mars , 2010 .

[34]  G. Balmino,et al.  Lander radioscience for obtaining the rotation and orientation of Mars , 2009 .

[35]  M. Klose,et al.  Large-Eddy Simulations of Dust Devils and Convective Vortices , 2016 .

[36]  Scott D. Guzewich,et al.  Atmospheric tides in Gale Crater, Mars , 2016 .

[37]  C. Narteau,et al.  Two modes for dune orientation , 2014 .

[38]  S. Calcutt,et al.  Seismic Coupling of Short-Period Wind Noise Through Mars’ Regolith for NASA’s InSight Lander , 2017 .

[39]  F. Forget,et al.  The solsticial pause on Mars: 2 modelling and investigation of causes , 2016 .

[40]  Javier Gómez-Elvira,et al.  Curiosity's rover environmental monitoring station: Overview of the first 100 sols , 2014 .

[41]  S. Lewis,et al.  Simulating the interannual variability of major dust storms on Mars using variable lifting thresholds , 2013 .

[42]  Robert M. Haberle,et al.  Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model , 2006 .

[43]  F. Forget,et al.  The martian mesosphere as revealed by CO2 cloud observations and General Circulation Modeling , 2011 .

[44]  Robert M. Haberle,et al.  Residual south polar cap of Mars: Stratigraphy, history, and implications of recent changes , 2009 .

[45]  B. E. Moshkin,et al.  The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter , 2018 .

[46]  M. Wolff,et al.  Aphelion water‐ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express , 2012 .

[47]  L. Vázquez,et al.  Characterization of the Martian Surface Layer , 2009 .

[48]  R. M. Henry,et al.  Frontal systems during passage of the Martian north polar hood over the Viking Lander 2 site prior to the first 1977 dust storm , 1979 .

[49]  Michael H. Wong,et al.  Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover , 2015 .

[50]  L. Montabone,et al.  Interannual variability of Martian dust storms in assimilation of several years of Mars global surveyor observations , 2005 .

[51]  F. Forget,et al.  Rocket dust storms and detached dust layers in the Martian atmosphere , 2012, 1208.5030.

[52]  V. Chevrier,et al.  Sublimation kinetics of CO2 ice on Mars , 2010 .

[53]  Javier Gómez-Elvira,et al.  Analysis of wind-induced dynamic pressure fluctuations during one and a half Martian years at Gale Crater , 2017 .

[54]  Raymond E. Arvidson,et al.  Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater , 2014 .

[55]  U. Högström Review of some basic characteristics of the atmospheric surface layer , 1996 .

[56]  Andrea Pacifici,et al.  ExoMars Atmospheric Mars Entry and Landing Investigations and Analysis (AMELIA) , 2019, Space Science Reviews.

[57]  P. Geissler,et al.  Observations from the High Resolution Imaging Science Experiment (HiRISE): Martian dust devils in Gusev and Russell craters , 2010 .

[58]  D. Rubin,et al.  Bedform Alignment in Directionally Varying Flows , 1987, Science.

[59]  Bruce A. Cantor,et al.  MARCI and MOC observations of the atmosphere and surface cap in the north polar region of Mars , 2010 .

[60]  Jean-Pierre Lebreton,et al.  Overview of the coordinated ground-based observations of Titan during the Huygens mission , 2006 .

[61]  A. Spiga Comment on ''Observing desert dust devils with a pressure logger" by Lorenz (2012) – insights on measured pressure fluctuations from large-eddy simulations , 2012 .

[62]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[63]  USING ENGINEERING CAMERAS ON MARS ROVERS AND LANDERS TO RETRIEVE ATMOSPHERIC DUST LOADING A Thesis by CHRISTOPHER ALAN WOLFE , 2016 .

[64]  Jean-Pierre Bibring,et al.  Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method , 2007 .

[65]  G. Hunt,et al.  The formation of Martian lee waves generated by a crater , 1979 .

[66]  Catherine Rio,et al.  A thermal plume model for the Martian convective boundary layer , 2013, 1306.6215.

[67]  Daniel E. McNamara,et al.  Ambient Noise Levels in the Continental United States , 2004 .

[68]  C. Ebeling Inferring Ocean Storm Characteristics from Ambient Seismic Noise , 2012 .

[69]  W. ZURE,et al.  Martian Great Dust Storms : An Update , 2002 .

[70]  R. Lorenz Observing desert dust devils with a pressure logger , 2012 .

[71]  Adam Deslauriers,et al.  Measuring the bulk density of meteorites nondestructively using three-dimensional laser imaging , 2006 .

[72]  O. Talagrand,et al.  Meteorological Variability and the Annual Surface Pressure Cycle on Mars , 1993 .

[73]  E. D. Schmitter Brief communication "Modeling tornado dynamics and the generation of infrasound, electric and magnetic fields" , 2010 .

[74]  B. Mosser,et al.  Planetary seismology , 1993 .

[75]  R. Todd Clancy,et al.  Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude , 2003 .

[76]  Francois Forget,et al.  A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results , 2009 .

[77]  G. C. Greene,et al.  Atmospheric measurements on Mars - The Viking meteorology experiment , 1976 .

[78]  W. Zürn,et al.  On noise reduction in vertical seismic records below 2 mHz using local barometric pressure , 1995 .

[79]  Stephen R. Lewis,et al.  The Martian climate revisited : atmosphere and environment of a desert planet , 2004 .

[80]  D. Breuer,et al.  The Heat Flow and Physical Properties Package (HP3) for the InSight Mission , 2018, Space Science Reviews.

[81]  A. Harri,et al.  Measurement of Martian boundary layer winds by the displacement of jettisoned lander hardware , 2018, Icarus.

[82]  Francesca Altieri,et al.  Mars Express measurements of surface albedo changes over 2004–2010 , 2015 .

[83]  P. Withers,et al.  Atmospheric studies from the Mars Science Laboratory Entry, Descent and Landing atmospheric structure reconstruction , 2016 .

[84]  M. Lemmon,et al.  Eight-year climatology of dust optical depth on Mars , 2014, 1409.4841.

[85]  Hiroo Kanamori,et al.  COMPUTATION OF SEISMOGRAMS AND ATMOSPHERIC OSCILLATIONS BY NORMAL-MODE SUMMATION FOR A SPHERICAL EARTH MODEL WITH REALISTIC ATMOSPHERE , 1998 .

[86]  R. Haberle,et al.  Characterizing the sensitivity of daytime turbulent activity on Mars with the MRAMS LES: Early results , 2010 .

[87]  Bruce A. Cantor,et al.  MOC observations of the 2001 Mars planet-encircling dust storm , 2007 .

[88]  R. Warburton,et al.  The influence of barometric‐pressure variations on gravity , 1977 .

[89]  D. Komatitsch,et al.  Hybrid Galerkin numerical modelling of elastodynamics and compressible Navier–Stokes couplings: applications to seismo-gravito acoustic waves , 2017 .

[90]  D. S. Choi,et al.  Measurements of Martian dust devil winds with HiRISE , 2011, 1301.6130.

[91]  R. M. Henry,et al.  Mars atmospheric phenomena during major dust storms, as measured at surface , 1979 .

[92]  P. Mason,et al.  Large-Eddy Simulation of the Convective Atmospheric Boundary Layer , 1989 .

[93]  Mark T. Lemmon,et al.  Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder , 1999 .

[94]  F. Ardhuin,et al.  Polarized Earth's ambient microseismic noise , 2011 .

[95]  Mark I. Richardson,et al.  Analysis of atmospheric mesoscale models for entry, descent, and landing , 2003 .

[96]  M. Lemmon,et al.  Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder , 1999 .

[97]  Giuseppe Piccioni,et al.  Calibration of the Planetary Fourier Spectrometer short wavelength channel , 2005 .

[98]  J. Schofield,et al.  Vertical distribution of dust in the Martian atmosphere during northern spring and summer: High-altitude tropical dust maximum at northern summer solstice , 2011 .

[99]  M. Lemmon,et al.  Interannual perturbations of the Martian surface heat flow by atmospheric dust opacity variations , 2016 .

[101]  F. Hourdin,et al.  Baroclinic Wave Transitions in the Martian Atmosphere , 1996 .

[102]  Ralph Lorenz,et al.  Field Measurements of Terrestrial and Martian Dust Devils , 2016 .

[103]  R. Todd Clancy,et al.  Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations , 2003 .

[104]  Walter Munk,et al.  O Gravity Waves in the Atmosphere. , 1954 .

[105]  M. Golombek,et al.  An Investigation of the Mechanical Properties of Some Martian Regolith Simulants with Respect to the Surface Properties at the InSight Mission Landing Site , 2017, Space Science Reviews.

[106]  Richard W. Zurek,et al.  An analysis of the history of dust activity on Mars , 1993 .

[107]  Gabriel G. Katul,et al.  Revisiting the Turbulent Prandtl Number in an Idealized Atmospheric Surface Layer , 2015 .

[108]  F. Ferri,et al.  Dust devils as observed by Mars Pathfinder , 1999 .

[109]  S. Debei,et al.  The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter , 2017 .

[110]  M. Golombek,et al.  Erratum to: An Investigation of the Mechanical Properties of Some Martian Regolith Simulants with Respect to the Surface Properties at the InSight Mission Landing Site , 2017 .

[111]  J. Barnes,et al.  Convergent crater circulations on Mars: Influence on the surface pressure cycle and the depth of the convective boundary layer , 2015 .

[112]  D. Alazard,et al.  Flexible Mode Modelling of the InSight Lander and Consequences for the SEIS Instrument , 2018, Space Science Reviews.

[113]  M. Richardson,et al.  Constraints on Mars’ recent equatorial wind regimes from layered deposits and comparison with general circulation model results , 2014 .

[114]  J. Bell,et al.  Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission , 2014, 1403.4234.

[115]  Mark T. Lemmon,et al.  Pressure observations by the Curiosity rover: Initial results , 2014 .

[116]  David Mimoun,et al.  The Noise Model of the SEIS Seismometer of the InSight Mission to Mars , 2017 .

[117]  Xin Gao,et al.  Phase diagrams of dune shape and orientation depending on sand availability , 2015, Scientific Reports.

[118]  L. Landberg,et al.  Aspects Of The Atmospheric Surface Layers On Mars And Earth , 2002 .

[119]  James R. Murphy,et al.  Results of the Imager for Mars Pathfinder windsock experiment , 2000 .

[120]  Kevin Hamilton,et al.  Comprehensive Model Simulation of Thermal Tides in the Martian Atmosphere , 1996 .

[121]  W. B. Banerdt,et al.  The Color Cameras on the InSight Lander , 2018, Space Science Reviews.

[122]  Thomas P. Kurosu,et al.  Global inventory of nitrogen oxide emissions constrained by space‐based observations of NO2 columns , 2003 .

[123]  J. Schofield,et al.  Results of the Mars Pathfinder atmospheric structure investigation , 1999 .

[124]  Stephen R. Lewis,et al.  THE MARTIAN ATMOSPHERIC BOUNDARY LAYER , 2011 .

[125]  Véronique Dehant,et al.  New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover , 2014 .

[126]  J. Murphy,et al.  Assessing atmospheric thermal Forcing from surface Pressure Data: Separating thermal Tides and local Topographic Influence , 2017 .

[127]  J. Avouac,et al.  Earth-like sand fluxes on Mars , 2012, Nature.

[128]  Raphaël F. Garcia,et al.  Finite-Difference Modeling of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Application to Infrasounds Emitted by Meteor Impacts , 2017 .

[129]  E. D. Schmitter Modeling tornado dynamics and the generation of infrasound , electric and magnetic fields ” , 2022 .

[130]  Fukao,et al.  Earth's background free oscillations , 1998, Science.

[131]  James B. Pollack,et al.  Viking Lander image analysis of Martian atmospheric dust , 1995 .

[132]  Javier Gómez-Elvira,et al.  The meteorology of Gale crater as determined from rover environmental monitoring station observations and numerical modeling. Part I: Comparison of model simulations with observations , 2016 .

[133]  J. Pollack,et al.  Orographic control of storm zones on Mars , 1996, Nature.

[134]  David C. Catling,et al.  Temperature, pressure, and wind instrumentation in the Phoenix meteorological package , 2008 .

[135]  P. Pina,et al.  Image processing algorithm for the identification of Martian dust devil tracks in MOC and HiRISE images , 2012 .

[136]  H. Yashiro,et al.  Martian dust devil statistics from high‐resolution large‐eddy simulations , 2016 .

[137]  M D Smith,et al.  The Vertical Dust Profile Over Gale Crater, Mars , 2017, Journal of geophysical research. Planets.

[138]  T. Imamura,et al.  Convective generation and vertical propagation of fast gravity waves on Mars: One- and two-dimensional modeling , 2016 .

[139]  M. D. Ellehoj,et al.  Convective vortices and dust devils at the Phoenix Mars mission landing site , 2010 .

[140]  Martin C. Towner,et al.  Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1–60 , 2002 .

[141]  Jimmy D Bell,et al.  Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity , 2004, Science.

[142]  B. Banerdt,et al.  Preparing for InSight: An Invitation to Participate in a Blind Test for Martian Seismicity , 2017 .

[143]  Martin Schimmel,et al.  Phase Cross-Correlations: Design, Comparisons, and Applications , 1999 .

[144]  Gordon G. Sorrells,et al.  A Preliminary Investigation into the Relationship between Long-Period Seismic Noise and Local Fluctuations in the Atmospheric Pressure Field , 2010 .

[145]  M. Mellon,et al.  Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix , 2010 .

[146]  Martin Schimmel,et al.  Global tomography using seismic hum , 2016 .

[147]  R. Wilson,et al.  The solsticial pause on Mars: 1. A planetary wave reanalysis , 2016 .

[148]  Jeffrey R. Johnson,et al.  Dust devil vortices seen by the Mars Pathfinder Camera , 1999 .

[149]  Robert M. Haberle,et al.  The atmosphere and climate of Mars , 2017 .

[150]  R. Lorenz,et al.  Viking‐2 Seismometer Measurements on Mars: PDS Data Archive and Meteorological Applications , 2017 .

[151]  R. M. Haberle,et al.  Diurnal variations in optical depth at Mars , 1989 .

[152]  R. Lorenz,et al.  Dust devil signatures in infrasound records of the International Monitoring System , 2015 .

[153]  D. Leneman,et al.  InSight Auxiliary Payload Sensor Suite (APSS) , 2019, Space Science Reviews.

[154]  G. R. Wilson,et al.  The atmosphere structure and meteorology instrument on the Mars Pathfinder lander , 1997 .

[155]  K. Gwinner,et al.  Selection of the InSight Landing Site , 2017 .

[156]  Naoki Kobayashi,et al.  Continuous excitation of planetary free oscillations by atmospheric disturbances , 1998, Nature.

[157]  Sami W. Asmar,et al.  The Rotation and Interior Structure Experiment on the InSight Mission to Mars , 2018, Space Science Reviews.

[158]  Mark T. Lemmon,et al.  Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission , 2014 .

[159]  E. Millour,et al.  The Mars Climate Database (MCD version 5.2) , 2015 .

[160]  Stephen R. Lewis,et al.  Structure and dynamics of the convective boundary layer on Mars as inferred from large‐eddy simulations and remote‐sensing measurements , 2010 .

[161]  Seismometer Detection of Dust Devil Vortices by Ground Tilt , 2015, 1511.06580.

[162]  A. Chicarro,et al.  Revealing Mars' deep interior: Future geodesy missions using radio links between landers, orbiters, and the Earth , 2011 .

[163]  David P. Hinson,et al.  The depth of the convective boundary layer on Mars , 2008 .

[164]  M. Richardson,et al.  The origin , evolution , and trajectory of large dust storms on Mars during Mars years 24 – 30 , 2015 .

[165]  M. Wolff,et al.  Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model , 2011 .

[166]  Bruce A. Cantor,et al.  Martian dust storms: 1999 Mars Orbiter Camera observations , 2001 .

[167]  M. Alexander,et al.  Gravity wave dynamics and effects in the middle atmosphere , 2003 .

[168]  P. Desai,et al.  Mars Phoenix Entry, Descent, and Landing Trajestory and Atmosphere Reconstruction , 2011 .

[169]  William H. Hooke,et al.  Waves in the atmosphere : atmospheric infrasound and gravity waves : their generation and propagation , 1975 .

[170]  J. Ryan,et al.  Two major dust storms, one Mars year apart: Comparison from Viking data , 1981 .

[171]  Michael D. Smith,et al.  Atmospheric entry profiles from the Mars Exploration Rovers Spirit and Opportunity , 2006 .

[172]  D. L. Anderson,et al.  Martian wind activity detected by a seismometer at Viking Lander 2 site , 1979 .

[173]  E. Millour,et al.  Unraveling the martian water cycle with high-resolution global climate simulations , 2017 .

[174]  R. Lorenz,et al.  Dust devil track survey at Elysium Planitia, Mars: Implications for the InSight landing sites , 2016 .

[175]  Thomas Jahr,et al.  On reduction of long-period horizontal seismic noise using local barometric pressure , 2007 .

[176]  J. Bell,et al.  Atmospheric movies acquired at the Mars Science Laboratory landing site: Cloud morphology, frequency and significance to the Gale Crater water cycle and Phoenix mission results , 2015 .

[177]  T. Foken 50 Years of the Monin–Obukhov Similarity Theory , 2006 .

[178]  Javier Gómez-Elvira,et al.  Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) rover's Bagnold Dunes Campaign and comparison with numerical modeling using MarsWRF. , 2017, Icarus.

[179]  M. Golombek,et al.  Rayleigh Wave Ellipticity Modeling and Inversion for Shallow Structure at the Proposed InSight Landing Site in Elysium Planitia, Mars , 2017 .

[180]  Don L. Anderson,et al.  Seismology on Mars , 1977 .

[181]  C. Newman,et al.  The impact of a realistic vertical dust distribution on the simulation of the Martian General Circulation , 2013 .

[182]  M. Golombek,et al.  A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site , 2018, Space Science Reviews.

[183]  Fabrizio Cara,et al.  A Study on Seismic Noise Variations at Colfiorito, Central Italy: Implications for the Use of H/V Spectral Ratios , 2003 .

[184]  S. Squyres,et al.  Surface and near-surface atmospheric temperatures for the Mars Exploration Rover landing sites , 2004 .

[185]  Jeroen Tromp,et al.  Planned Products of the Mars Structure Service for the InSight Mission to Mars , 2017 .

[186]  Stephen R. Lewis,et al.  Atmospheric tides in a Mars general circulation model with data assimilation , 2005 .

[187]  L. Rolland,et al.  Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives. , 2016, The Journal of the Acoustical Society of America.

[188]  F. Forget,et al.  Mars’ Background Free Oscillations , 2019, Space Science Reviews.

[189]  A. Spiga,et al.  Gravity waves, cold pockets and CO2 clouds in the Martian mesosphere , 2012 .

[190]  R. M. Henry,et al.  The annual cycle of pressure on Mars measured by Viking landers 1 and 2 , 1980 .

[191]  E. F. Bradley,et al.  Flux-Profile Relationships in the Atmospheric Surface Layer , 1971 .

[192]  E. Sebastián,et al.  REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover , 2012 .

[193]  Maria Rosaria Gallipoli,et al.  The influence of wind on measurements of seismic noise , 2005 .

[194]  W. Folkner,et al.  Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. , 1997, Science.

[195]  A. Spiga,et al.  The water cycle and regolith-atmosphere interaction at Gale crater, Mars , 2017 .

[196]  Jean-Pierre Bibring,et al.  Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps , 2007 .

[197]  W. Abdou,et al.  Seasonal and diurnal variability of detached dust layers in the tropical Martian atmosphere , 2014 .

[198]  Ashwin R. Vasavada,et al.  Assessment of Environments for Mars Science Laboratory Entry, Descent, and Surface Operations , 2012 .

[199]  David Mimoun,et al.  Evaluating the Wind-Induced Mechanical Noise on the InSight Seismometers , 2016, 1612.04308.

[200]  J. Hunt,et al.  Turbulent wind flow over a low hill , 1975 .

[201]  D. Lilly On the numerical simulation of buoyant convection , 1962 .

[202]  Javier Gómez-Elvira,et al.  The meteorology of Gale Crater as determined from Rover Environmental Monitoring Station observations and numerical modeling. Part II: Interpretation , 2016 .

[203]  A. Seiff,et al.  Structure of Mars' Atmosphere up to 100 Kilometers from the Entry Measurements of Viking 2 , 1976, Science.

[204]  N. Teanby,et al.  Bolide Airbursts as a Seismic Source for the 2018 Mars InSight Mission , 2017 .

[205]  Scot C. R. Rafkin,et al.  Large‐eddy simulation of atmospheric convection on Mars , 2004 .

[206]  O. Forni,et al.  A study of the properties of a local dust storm with Mars Express OMEGA and PFS data , 2009 .

[207]  David Mimoun,et al.  Estimations of the Seismic Pressure Noise on Mars Determined from Large Eddy Simulations and Demonstration of Pressure Decorrelation Techniques for the Insight Mission , 2017, Space Science Reviews.

[208]  Richard W. Zurek,et al.  Martian great dust storms: An update , 1982 .

[209]  François Poulet,et al.  OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité , 2004 .

[210]  J. Garratt The Atmospheric Boundary Layer , 1992 .

[211]  M. J. Wolff,et al.  An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere , 2000 .

[212]  A. Spiga,et al.  An assessment of the impact of local processes on dust lifting in Martian climate models , 2015 .

[213]  J. Murphy,et al.  Mars Pathfinder convective vortices: Frequency of occurrence , 2002 .

[214]  Gottfried Schwarz,et al.  The high-resolution stereo camera (HRSC) experiment on Mars Express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission , 2007 .

[215]  J. Schofield,et al.  Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity , 2009 .

[216]  A simple model of the magnetic emission from a dust devil , 2007 .

[217]  G. Vallis Atmospheric and Oceanic Fluid Dynamics , 2006 .

[218]  A. Lucas,et al.  Sediment flux from the morphodynamics of elongating linear dunes , 2015 .

[219]  F. Scholten,et al.  Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models , 2010 .

[220]  S. Squyres,et al.  Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover Spirit , 2006 .

[221]  Andrew P. Ingersoll,et al.  Cyclones, tides, and the origin of a cross‐equatorial dust storm on Mars , 2003 .

[222]  A. Nier,et al.  Composition and Structure of the Martian Atmosphere: Preliminary Results from Viking 1 , 1976, Science.

[223]  Yves Langevin,et al.  OMEGA/Mars Express: Visual channel performances and data reduction techniques , 2006 .

[224]  J. Bandfield,et al.  Retrievals of martian atmospheric opacities from MGS TES nighttime data , 2013 .

[225]  D. Catling,et al.  Observations of atmospheric tides on Mars at the season and latitude of the Phoenix atmospheric entry , 2010 .

[226]  Geoffrey K. Vallis,et al.  Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation , 2017 .

[227]  M. Zuber,et al.  Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters , 2011 .

[228]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[229]  B. Marticorena,et al.  An aerodynamic roughness length map derived from extended Martian rock abundance data , 2012 .

[230]  A. Määttänen,et al.  Sensitivity Tests with a One-Dimensional Boundary-Layer Mars Model , 2004 .

[231]  Robert G. Deen,et al.  InSight Mars Lander Robotics Instrument Deployment System , 2018, Space Science Reviews.

[232]  Comparison of PFS and TES observations of temperature and water vapor in the martian atmosphere , 2011 .

[233]  Amitabha Ghosh,et al.  One Martian year of atmospheric observations using MER Mini‐TES , 2006 .