Optimization Toolbox

fmincon Find a minimum of a constrained nonlinear multivariable function subject to where x, b, beq, lb, and ub are vectors, A and Aeq are matrices, c(x) and ceq(x) are functions that return vectors, and f(x) is a function that returns a scalar. f(x), c(x), and ceq(x) can be nonlinear functions. Description fmincon finds a constrained minimum of a scalar function of several variables starting at an initial estimate. This is generally referred to as constrained nonlinear optimization or nonlinear programming. x = fmincon(fun,x0,A,b) starts at x0 and finds a minimum x to the function described in fun subject to the linear inequalities A*x <= b. x0 can be a scalar, vector, or matrix. x = fmincon(fun,x0,A,b,Aeq,beq) minimizes fun subject to the linear equalities Aeq*x = beq as well as A*x <= b. Set A=[] and b=[] if no inequalities exist. defines a set of lower and upper bounds on the design variables, x, so that the solution is always in the range lb <= x <= ub. Set Aeq=[] and beq=[] if no equalities exist.

[1]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[2]  T. Coleman,et al.  On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds , 1992 .

[3]  William C. Davidon,et al.  Variable Metric Method for Minimization , 1959, SIAM J. Optim..

[4]  R. Fletcher Practical Methods of Optimization , 1988 .

[5]  Peter J. Fleming,et al.  Application of multi-objective optimisation to compensator design for SISO control systems , 1986 .

[6]  R. Kalaba,et al.  Nonlinear Least Squares , 1986 .

[7]  Michael A. Saunders,et al.  Procedures for optimization problems with a mixture of bounds and general linear constraints , 1984, ACM Trans. Math. Softw..

[8]  M. J. D. Powell,et al.  Variable Metric Methods for Constrained Optimization , 1982, ISMP.

[9]  Philip E. Gill,et al.  Practical optimization , 1981 .

[10]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[11]  Robert K. Brayton,et al.  A new algorithm for statistical circuit design based on quasi-newton methods and function splitting , 1979 .

[12]  K. Madsen,et al.  Algorithms for worst-case tolerance optimization , 1979 .

[13]  M. J. D. Powell,et al.  THE CONVERGENCE OF VARIABLE METRIC METHODS FOR NONLINEARLY CONSTRAINED OPTIMIZATION CALCULATIONS , 1978 .

[14]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[15]  Larry Nazareth,et al.  A family of variable metric updates , 1977, Math. Program..

[16]  Y. Censor Pareto optimality in multiobjective problems , 1977 .

[17]  J. J. Moré,et al.  Levenberg--Marquardt algorithm: implementation and theory , 1977 .

[18]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[19]  F. W. Gembicki,et al.  Vector optimization for control with performance and parameter sensitivity indices , 1974 .

[20]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[21]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[22]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[23]  E. Polak,et al.  Constrained minimization under vector-valued criteria in finite dimensional spaces☆ , 1967 .

[24]  F. Waltz An engineering approach: Hierarchical optimization criteria , 1967, IEEE Transactions on Automatic Control.

[25]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[26]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[27]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .