Ceramic nanoparticles and carbon nanotubes reinforced thermoplastic materials for piezocapacitive sensing applications

[1]  Xingyi Huang,et al.  High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications , 2019, Progress in Materials Science.

[2]  Tongqing Lu,et al.  Dielectric gels with ultra-high dielectric constant, low elastic modulus, and excellent transparency , 2018, NPG Asia Materials.

[3]  K. Varma,et al.  Enhanced Dielectric Properties of LaNiO3/BaTiO3/PVDF: A Three-Phase Percolative Polymer Nanocrystal Composite. , 2018, ACS applied materials & interfaces.

[4]  Ronggui Yang,et al.  Thermal conductivity of polymers and polymer nanocomposites , 2018, Materials Science and Engineering: R: Reports.

[5]  S. Lanceros‐Méndez,et al.  Electroactive poly(vinylidene fluoride)-based structures for advanced applications , 2018, Nature Protocols.

[6]  D. Sangeetha,et al.  A synthesis study of phosphonated PSEBS for high temperature proton exchange membrane fuel cells , 2018 .

[7]  D. Chun,et al.  Effect of Multiwalled Carbon Nanotubes on the Mechanical Properties of Carbon Fiber-Reinforced Polyamide-6/Polypropylene Composites for Lightweight Automotive Parts , 2018, Materials.

[8]  S. Lanceros‐Méndez,et al.  Magnetic cellulose nanocrystal nanocomposites for the development of green functional materials. , 2017, Carbohydrate polymers.

[9]  Jipeng Guan,et al.  Towards Flexible Dielectric Materials with High Dielectric Constant and Low Loss: PVDF Nanocomposites with both Homogenously Dispersed CNTs and Ionic Liquids Nanodomains , 2017, Polymers.

[10]  Swagata Roy,et al.  Electroactive and High Dielectric Folic Acid/PVDF Composite Film Rooted Simplistic Organic Photovoltaic Self-Charging Energy Storage Cell with Superior Energy Density and Storage Capability. , 2017, ACS applied materials & interfaces.

[11]  L. Luo,et al.  Three-phase Fe3O4/MWNT/PVDF nanocomposites with high dielectric constant for embedded capacitor , 2017 .

[12]  Shuhui Yu,et al.  Barium titanate coated and thermally reduced graphene oxide towards high dielectric constant and low loss of polymeric composites , 2017 .

[13]  Yuan Deng,et al.  Core-shell structured BaTiO3@Al2O3 nanoparticles in polymer composites for dielectric loss suppression and breakdown strength enhancement , 2017 .

[14]  R. Gerhardt,et al.  Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation , 2016 .

[15]  Rahul K Gupta,et al.  Dielectric properties and electromagnetic interference shielding effectiveness of graphene-based biodegradable nanocomposites , 2016 .

[16]  E. Fortunati,et al.  PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties. , 2016, Carbohydrate polymers.

[17]  Jong-Ho Kim,et al.  Enhanced performance in capacitive force sensors using carbon nanotube/polydimethylsiloxane nanocomposites with high dielectric properties. , 2016, Nanoscale.

[18]  Qinghua Zhang,et al.  Giant Energy Density and Improved Discharge Efficiency of Solution‐Processed Polymer Nanocomposites for Dielectric Energy Storage , 2016, Advanced materials.

[19]  Shaohua Jiang,et al.  High permittivity nanocomposites fabricated from electrospun polyimide/BaTiO3 hybrid nanofibers , 2016 .

[20]  Jong Hak Kim,et al.  Mixed matrix membranes consisting of SEBS block copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture , 2015 .

[21]  Qi Zhou,et al.  Biocomposites from Natural Rubber: Synergistic Effects of Functionalized Cellulose Nanocrystals as Both Reinforcing and Cross-Linking Agents via Free-Radical Thiol-ene Chemistry. , 2015, ACS applied materials & interfaces.

[22]  Senentxu Lanceros-Méndez,et al.  Mechanical vs. electrical hysteresis of carbon nanotube/styrene-butadiene-styrene composites and their influence in the electromechanical response , 2015 .

[23]  J. Sarasua,et al.  From implantation to degradation - are poly (l-lactide)/multiwall carbon nanotube composite materials really cytocompatible? , 2014, Nanomedicine : nanotechnology, biology, and medicine.

[24]  A. C. Lopes,et al.  Electroactive phases of poly(vinylidene fluoride) : determination, processing and applications , 2014 .

[25]  S. Lanceros‐Méndez,et al.  Evaluation of dielectric models for ceramic/polymer composites: Effect of filler size and concentration , 2014 .

[26]  H. Deng,et al.  Selective localization of multi-walled carbon nanotubes in thermoplastic elastomer blends: An effective method for tunable resistivity–strain sensing behavior , 2014 .

[27]  Wi Hyoung Lee,et al.  Flexible and transparent dielectric film with a high dielectric constant using chemical vapor deposition-grown graphene interlayer. , 2014, ACS nano.

[28]  Youssef Habibi,et al.  Polylactide (PLA)-based nanocomposites , 2013 .

[29]  V. Sencadas,et al.  Mechanical, electrical and electro-mechanical properties of thermoplastic elastomer styrene–butadiene–styrene/multiwall carbon nanotubes composites , 2013, Journal of Materials Science.

[30]  C. A. Ferreira,et al.  New sulfonated polystyrene and styrene-ethylene/butylene-styrene block copolymers for applications in electrodialysis. , 2012, The journal of physical chemistry. B.

[31]  A. Orlacchio,et al.  Biocompatible poly(L-lactide)/MWCNT nanocomposites: morphological characterization, electrical properties, and stem cell interaction. , 2012, Macromolecular bioscience.

[32]  A. Salazar,et al.  Nano- and microstructural effects on thermal properties of poly (l-lactide)/multi-wall carbon nanotube composites , 2012 .

[33]  J. J. Smit,et al.  Anomalous behaviour of the dielectric spectroscopy response of nanocomposites , 2012, IEEE Transactions on Dielectrics and Electrical Insulation.

[34]  S. Lanceros‐Méndez,et al.  Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites , 2012, Journal of Materials Science.

[35]  T. Amornsakchai,et al.  Thermo‐oxidative decomposition kinetics of elastomeric composites based on styrene‐(ethylene‐butylene)‐styrene triblock copolymer and organomontmorillonite , 2011 .

[36]  Xingyi Huang,et al.  Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer , 2011 .

[37]  J. Capsal,et al.  Dynamic mechanical behaviour of polyamide 11/Barium titanate ferroelectric composites , 2010 .

[38]  S. Lanceros‐Méndez,et al.  Influence of processing parameters on the polymer phase, microstructure and macroscopic properties of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites , 2010 .

[39]  J. Nakamura,et al.  Conductivity and dielectric constant of nanotube/polymer composites , 2010 .

[40]  Lin Li,et al.  POLYMER NANOCOMPOSITES BASED ON FUNCTIONALIZED CARBON NANOTUBES , 2010 .

[41]  D. Tasis,et al.  Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties , 2010 .

[42]  W. Bauhofer,et al.  A review and analysis of electrical percolation in carbon nanotube polymer composites , 2009 .

[43]  Weitao Zheng,et al.  Electrical conductivity of poly(vinylidene fluoride)/carbon nanotube composites with a spherical substructure , 2009 .

[44]  Yoshio Kobayashi,et al.  Fabrication of barium titanate nanoparticles‐polymethylmethacrylate composite films and their dielectric properties , 2009 .

[45]  John G. Lyons,et al.  Synthesis and characterisation of styrene butadiene styrene-g-acrylic acid for potential use in biomedical applications , 2009 .

[46]  R. Jose,et al.  Characterization, sintering and dielectric properties of nanocrystalline barium titanate synthesized through a modified combustion process , 2009 .

[47]  Yongjin Li,et al.  Toward a Stretchable, Elastic, and Electrically Conductive Nanocomposite: Morphology and Properties of Poly[styrene-b-(ethylene-co-butylene)-b-styrene]/Multiwalled Carbon Nanotube Composites Fabricated by High-Shear Processing , 2009 .

[48]  Pierre Gilormini,et al.  Author manuscript, published in "European Polymer Journal (2009) 601-612" A review on the Mullins ’ effect , 2022 .

[49]  J. G. Rocha,et al.  Microscopic origin of the high-strain mechanical response of poled and non-poled poly(vinylidene fluoride) in the β-phase , 2008 .

[50]  Av Andriy Kyrylyuk,et al.  On the influence of the processing conditions on the performance of electrically conductive carbon nanotube/polymer nanocomposites , 2008 .

[51]  D. De Rossi,et al.  Silicone–Poly(hexylthiophene) Blends as Elastomers with Enhanced Electromechanical Transduction Properties , 2008 .

[52]  A. Marzocca,et al.  Carbon nanotubes as reinforcement of styrene–butadiene rubber , 2007 .

[53]  Lei Liu,et al.  Clay Assisted Dispersion of Carbon Nanotubes in Conductive Epoxy Nanocomposites , 2007 .

[54]  A. Drozdov A model for the mechanical response of composites with thermoplastic-elastomer matrices , 2006 .

[55]  Z. Dang,et al.  Carbon nanotube composites with high dielectric constant at low percolation threshold , 2005 .

[56]  G. Montanari,et al.  Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[57]  K. Urayama,et al.  Thermotropic liquid‐crystalline copolyester (Rodrun LC3000)/thermoplastic elastomer (SEBS) in situ composites: II. Mechanical properties and morphology of monofilaments in comparison with extruded strands , 2003 .

[58]  S. Kanzaki,et al.  High strength B4C–TiB2 composites fabricated by reaction hot-pressing , 2003 .

[59]  Modeeparampil N. Kamalasanan,et al.  Structural and microstructural evolution of barium titanate thin films deposited by the sol‐gel process , 1994 .

[60]  J. W. Barlow,et al.  Thermal, mechanical, and morphological analyses of poly(2,6-dimethyl-1,4-phenylene oxide)/styrene-butadiene-styrene copolymer blends , 1988 .

[61]  J. Kennedy,et al.  Dielectric polarization enhancement of thermoplastic elastomers for sensing and energy harvesting applications. , 2016 .

[62]  P. Regtien 5 – Capacitive Sensors , 2012 .

[63]  J. G. Rocha,et al.  Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the β-phase , 2008 .

[64]  and properties , 2008 .

[65]  Geoffrey Grimmett,et al.  Percolation and disordered systems , 1997 .

[66]  N. V. Reddy,et al.  Dielectric properties of amorphous cellulose acetate-butyrate polymer films , 1993 .