Statistical Physics Of Opinion Formation: Is it a SPOOF?

[1]  J. Ramasco,et al.  Herding and idiosyncratic choices: Nonlinearity and aging-induced transitions in the noisy voter model , 2018, Comptes Rendus Physique.

[2]  S. Redner,et al.  Reality-inspired voter models: A mini-review , 2018, Comptes Rendus Physique.

[3]  Byungjoon Min,et al.  Multilayer coevolution dynamics of the nonlinear voter model , 2018, New Journal of Physics.

[4]  Jesus M. Encinas,et al.  Majority vote model with ancillary noise in complex networks , 2018, Physica A: Statistical Mechanics and its Applications.

[5]  J. Nadal,et al.  Perceptual Decision-Making: Biases in Post-Error Reaction Times Explained by Attractor Network Dynamics , 2018, The Journal of Neuroscience.

[6]  K. Sznajd-Weron,et al.  Conformity in numbers—Does criticality in social responses exist? , 2018, PloS one.

[7]  E. J. Leeuwen,et al.  Conformity , 2018, The International Encyclopedia of Anthropology.

[8]  Rafał Weron,et al.  The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach , 2018, Physica A: Statistical Mechanics and its Applications.

[9]  M. S. Miguel,et al.  Stochastic pair approximation treatment of the noisy voter model , 2018, New Journal of Physics.

[10]  Maxi San Miguel,et al.  Coevolving nonlinear voter model with triadic closure , 2018, EPL (Europhysics Letters).

[11]  Katarzyna Sznajd-Weron,et al.  Think then act or act then think? , 2018, PloS one.

[12]  CRISTINA LEISE BASTOS MONTEIRO Malte , 2018, Profils Commerciaux.

[13]  A. Baronchelli,et al.  Experimental evidence for tipping points in social convention , 2018, Science.

[14]  Hanshuang Chen,et al.  Phase transitions in a multistate majority-vote model on complex networks. , 2016, Physical review. E.

[15]  Michael T. Gastner,et al.  Consensus time in a voter model with concealed and publicly expressed opinions , 2018, Journal of Statistical Mechanics: Theory and Experiment.

[16]  Katarzyna Sznajd-Weron,et al.  Impact of memory on opinion dynamics , 2018, Physica A: Statistical Mechanics and its Applications.

[17]  Celia Anteneodo,et al.  Threshold q-voter model , 2018, Physical review. E.

[18]  M San Miguel,et al.  Analytical and numerical study of the non-linear noisy voter model on complex networks. , 2018, Chaos.

[19]  C. Escudero,et al.  Reaction–Diffusion Kinetics in Growing Domains , 2018, 1803.01061.

[20]  Jérôme Michaud,et al.  Social Influence with Recurrent Mobility with multiple options , 2018, Physical review. E.

[21]  Raul Toral,et al.  Zealots in the mean-field noisy voter model. , 2017, Physical review. E.

[22]  K. Suchecki,et al.  Coupling of link- and node-ordering in the coevolving voter model. , 2017, Physical review. E.

[23]  Katarzyna Sznajd-Weron,et al.  Person-Situation Debate Revisited: Phase Transitions with Quenched and Annealed Disorders , 2017, Entropy.

[24]  Maxi San Miguel,et al.  Fragmentation transitions in a coevolving nonlinear voter model , 2017, Scientific Reports.

[25]  Katarzyna Sznajd-Weron,et al.  Q-voter model with nonconformity in freely forming groups: Does the size distribution matter? , 2017, Physical review. E.

[26]  Andrew Mellor,et al.  Heterogeneous out-of-equilibrium nonlinear q-voter model with zealotry. , 2017, Physical review. E.

[27]  Tyll Krüger,et al.  Conformity, Anticonformity and Polarization of Opinions: Insights from a Mathematical Model of Opinion Dynamics , 2016, Entropy.

[28]  Vittorio Loreto,et al.  Opinion dynamics: models, extensions and external effects , 2016, Participatory Sensing, Opinions and Collective Awareness.

[29]  K. Sznajd-Weron,et al.  The Hunt Opinion Model—An Agent Based Approach to Recurring Fashion Cycles , 2016, PloS one.

[30]  Youjin Deng,et al.  Equivalent-neighbor Potts models in two dimensions. , 2016, Physical Review E.

[31]  Serge Galam,et al.  The Trump phenomenon, an explanation from sociophysics , 2016, 1609.03933.

[32]  Katarzyna Sznajd-Weron,et al.  Difficulty is critical: The importance of social factors in modeling diffusion of green products and practices , 2016 .

[33]  Arkadiusz Jędrzejewski,et al.  Pair approximation for the q-voter model with independence on complex networks. , 2016, Physical review. E.

[34]  Hanshuang Chen,et al.  Discontinuous phase transition in an annealed multi-state majority-vote model , 2016, 1604.04836.

[35]  Patryk Siedlecki,et al.  The Interplay Between Conformity and Anticonformity and its Polarizing Effect on Society , 2016, J. Artif. Soc. Soc. Simul..

[36]  Katarzyna Sznajd-Weron,et al.  The diamond model of social response within an agent-based approach , 2016 .

[37]  Adrian Carro,et al.  The noisy voter model on complex networks , 2016, Scientific Reports.

[38]  Andrew Mellor,et al.  Characterization of the nonequilibrium steady state of a heterogeneous nonlinear q-voter model with zealotry , 2016, ArXiv.

[39]  Nuno Crokidakis,et al.  Phase transitions in the majority-vote model with two types of noises , 2015, 1511.05111.

[40]  Katarzyna Sznajd-Weron,et al.  Mapping the q-voter model: From a single chain to complex networks , 2015, 1501.05091.

[41]  David G. Rand,et al.  Agent-Based Modeling , 2016 .

[42]  Mauro Mobilia,et al.  Nonlinear $q$-voter model with inflexible zealots , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  D. Madsen,et al.  Experimental Methods in Economics and Psychology: A Comparison , 2015 .

[44]  Katarzyna Sznajd-Weron,et al.  Phase transitions in the q-voter model with noise on a duplex clique. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  André M Timpanaro,et al.  Analytical expression for the exit probability of the q-voter model in one dimension. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  R. Weron,et al.  Is the Person-Situation Debate Important for Agent-Based Modeling and Vice-Versa? , 2014, PloS one.

[47]  Marco Alberto Javarone,et al.  Conformism-driven phases of opinion formation on heterogeneous networks: the q-voter model case , 2014, 1410.7300.

[48]  Katarzyna Sznajd-Weron,et al.  A nonlinear q-voter model with deadlocks on the Watts–Strogatz graph , 2014, ArXiv.

[49]  André M Timpanaro,et al.  Exit probability of the one-dimensional q-voter model: analytical results and simulations for large networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Maxi San Miguel,et al.  Is the Voter Model a model for voters? , 2013, Physical review letters.

[51]  Hansjörg Neth,et al.  Social Influence and the Collective Dynamics of Opinion Formation , 2013, PloS one.

[52]  Rafal Weron,et al.  Rewiring the network. What helps an innovation to diffuse? , 2013, ArXiv.

[53]  Naoki Masuda,et al.  Complex dynamics of a nonlinear voter model with contrarian agents. , 2013, Chaos.

[54]  Serge Galam,et al.  The Drastic Outcomes from Voting Alliances in Three-Party Democratic Voting (1990 → 2013) , 2013, 1304.6648.

[55]  G. Macdonald,et al.  Proposal of a Double Diamond Model of Social Response , 2013 .

[56]  K. Sznajd-Weron,et al.  Anticonformity or Independence?—Insights from Statistical Physics , 2013 .

[57]  Romualdo Pastor-Satorras,et al.  Mean-Field Analysis of the q-Voter Model on Networks , 2013, 1301.7563.

[58]  J. Gleeson Binary-state dynamics on complex networks: pair approximation and beyond , 2012, 1209.2983.

[59]  André C. R. Martins,et al.  The building up of individual inflexibility in opinion dynamics , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  André M. Timpanaro,et al.  Connections between the Sznajd model with general confidence rules and graph theory. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Katarzyna Sznajd-Weron,et al.  Phase transitions in the q-voter model with two types of stochastic driving. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  R. Pastor-Satorras,et al.  Heterogenous mean-field analysis of a generalized voter-like model on networks , 2011, 1106.4215.

[63]  Katarzyna Sznajd-Weron,et al.  Opinion dynamics as a movement in a bistable potential. , 2011, 1103.0417.

[64]  Sergey Melnik,et al.  Accuracy of mean-field theory for dynamics on real-world networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Katarzyna Sznajd-Weron,et al.  Exit probability in a one-dimensional nonlinear q-voter model. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Ying-Cheng Lai,et al.  Convergence to global consensus in opinion dynamics under a nonlinear voter model , 2010, 1008.0901.

[67]  R. Dolan,et al.  How the Opinion of Others Affects Our Valuation of Objects , 2010, Current Biology.

[68]  F. Vazquez,et al.  Agent based models of language competition: macroscopic descriptions and order–disorder transitions , 2010, 1002.1251.

[69]  R. Pastor-Satorras,et al.  Mean-field diffusive dynamics on weighted networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  S. Redner,et al.  A Kinetic View of Statistical Physics , 2010 .

[71]  M. A. Muñoz,et al.  Nonlinear q-voter model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Leo P. Kadanoff,et al.  More is the Same; Phase Transitions and Mean Field Theories , 2009, 0906.0653.

[73]  Richard E. Lucas,et al.  Introduction to personality and assessment at age 40: Reflections on the legacy of the person–situation debate and the future of person–situation integration , 2009 .

[74]  Emanuele Pugliese,et al.  Heterogeneous pair approximation for voter models on networks , 2009, 0903.5489.

[75]  H. Hinrichsen,et al.  Non-Equilibrium Phase Transitions: Volume 1: Absorbing Phase Transitions , 2009 .

[76]  F. Schweitzer,et al.  Nonlinear voter models: the transition from invasion to coexistence , 2003, cond-mat/0307742.

[77]  Cristóbal López,et al.  Systems with two symmetric absorbing states: relating the microscopic dynamics with the macroscopic behavior. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  R. Weron,et al.  Outflow dynamics in modeling oligopoly markets: the case of the mobile telecommunications market in Poland , 2008, 0809.1534.

[79]  F. Vazquez,et al.  Analytical solution of the voter model on uncorrelated networks , 2008, 0803.1686.

[80]  Andre C. R. Martins,et al.  CONTINUOUS OPINIONS AND DISCRETE ACTIONS IN OPINION DYNAMICS PROBLEMS , 2007, 0711.1199.

[81]  Maxi San Miguel,et al.  Generic absorbing transition in coevolution dynamics. , 2007, Physical review letters.

[82]  K. Kułakowski,et al.  THE GALAM MODEL OF MINORITY OPINION SPREADING AND THE MARRIAGE GAP , 2007, physics/0703268.

[83]  Thilo Gross,et al.  Adaptive coevolutionary networks: a review , 2007, Journal of The Royal Society Interface.

[84]  Jan Lorenz,et al.  Continuous Opinion Dynamics under Bounded Confidence: A Survey , 2007, 0707.1762.

[85]  S. Galam From 2000 Bush–Gore to 2006 Italian elections: voting at fifty-fifty and the contrarian effect , 2007, physics/0703095.

[86]  Eliot R. Smith,et al.  Agent-Based Modeling: A New Approach for Theory Building in Social Psychology , 2007, Personality and social psychology review : an official journal of the Society for Personality and Social Psychology, Inc.

[87]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[88]  R. Bond,et al.  Group Size and Conformity , 2005 .

[89]  Katarzyna Sznajd-Weron,et al.  Who is left, who is right? , 2005 .

[90]  V. Latora,et al.  VECTOR OPINION DYNAMICS IN A BOUNDED CONFIDENCE CONSENSUS MODEL , 2005, physics/0504017.

[91]  M. A. Muñoz,et al.  Langevin description of critical phenomena with two symmetric absorbing states. , 2004, Physical review letters.

[92]  Louisa Flintoft,et al.  Systems biology: Rewiring the network , 2004, Nature Reviews Genetics.

[93]  Serge Galam,et al.  The dynamics of minority opinions in democratic debate , 2004 .

[94]  K. Balzer [What is left]. , 2004, Pflege Zeitschrift.

[95]  W. Fleeson Moving Personality Beyond the Person-Situation Debate , 2004 .

[96]  S. Galam Contrarian deterministic effects on opinion dynamics: “the hung elections scenario” , 2003, cond-mat/0307404.

[97]  M. Macy,et al.  FROM FACTORS TO ACTORS: Computational Sociology and Agent-Based Modeling , 2002 .

[98]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[99]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[100]  S. Galam Minority opinion spreading in random geometry , 2002, cond-mat/0203553.

[101]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[102]  Dietrich Stauffer,et al.  DAMAGE SPREADING, COARSENING DYNAMICS AND DISTRIBUTION OF POLITICAL VOTES IN SZNAJD MODEL ON SQUARE LATTICE , 2001 .

[103]  Katarzyna Sznajd-Weron,et al.  Opinion evolution in closed community , 2000, cond-mat/0101130.

[104]  G. Macdonald,et al.  Proposal of a four-dimensional model of social response. , 2000, Psychological bulletin.

[105]  H. Hinrichsen Non-equilibrium critical phenomena and phase transitions into absorbing states , 2000, cond-mat/0001070.

[106]  Guillaume Deffuant,et al.  Mixing beliefs among interacting agents , 2000, Adv. Complex Syst..

[107]  R. Dickman,et al.  Nonequilibrium Phase Transitions in Lattice Models , 1999 .

[108]  Robin R. Vallacher,et al.  Dynamical Social Psychology , 1998 .

[109]  R. Axelrod The Dissemination of Culture , 1997 .

[110]  S. Galam Rational group decision making: A random field Ising model at T = 0 , 1997, cond-mat/9702163.

[111]  R. Dick Complex Structures in Quantum Field Theory , 1997 .

[112]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[113]  B. Krahé,et al.  Personality and Social Psychology: Towards a Synthesis , 1992 .

[114]  M. J. Oliveira,et al.  Isotropic majority-vote model on a square lattice , 1992 .

[115]  M. J. Oliveira,et al.  Non-equilibrium Ising model with competing Glauber dynamics , 1991 .

[116]  S. Galam,et al.  Towards a theory of collective phenomena: Consensus and attitude changes in groups , 1991 .

[117]  S. Galam Social paradoxes of majority rule voting and renormalization group , 1990 .

[118]  B. Latané,et al.  From private attitude to public opinion: A dynamic theory of social impact. , 1990 .

[119]  M. Plischke,et al.  Equilibrium statistical physics , 1988 .

[120]  T. Liggett Interacting Particle Systems , 1985 .

[121]  S. Fiske,et al.  Social Psychology , 2019, Encyclopedia of Personality and Individual Differences.

[122]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[123]  Tyler Reeves Nansen,et al.  More of the same. , 1970, Nature.

[124]  R. H. Willis,et al.  Conformity, Independence, and Anticonformity , 1965 .

[125]  M. Argyle Social pressure in public and private situations. , 1957, Journal of abnormal psychology.

[126]  S. Asch Studies of independence and conformity: I. A minority of one against a unanimous majority. , 1956 .

[127]  S. Asch Opinions and Social Pressure , 1955, Nature.

[128]  L. Landau,et al.  The Theory of Phase Transitions , 1936, Nature.

[129]  P. Weiss L'hypothèse du champ moléculaire et la propriété ferromagnétique , 1907 .