Search for life in ice-covered oceans and lakes beyond Earth

The quest for life on other planets is closely connected with the search for water in liquid state. Recent discoveries of deep oceans on icy moons like Europa and Enceladus have spurred an intensive discussion about how these waters can be accessed. The challenge of this endeavor lies in the unforeseeable requirements on instrumental characteristics both with respect to the scientific and technical methods. The TRIPLE/nanoAUV initiative is aiming at developing a mission concept for exploring exo-oceans and demonstrating the achievements in an earth-analogue context, exploring the ocean under the ice shield of Antarctica and lakes like Dome-C on the Antarctic continent.

[1]  R. Garmier,et al.  Rosetta lander Philae: Flight Dynamics analyses for landing site selection and post-landing operations , 2016 .

[2]  Bernd Eissfeller,et al.  Navigation technology for exploration of glacier ice with maneuverable melting probes , 2016 .

[3]  T. Hill,et al.  The water vapor plumes of Enceladus , 2011 .

[4]  A. Hördt,et al.  Reorientation of three‐component borehole magnetic data , 2015 .

[5]  Stephan Ulamec,et al.  Clean In Situ Subsurface Exploration of Icy Environments in the Solar System , 2013 .

[6]  Frank Kirchner,et al.  Combining cameras, magnetometers and machine-learning into a close-range localization system for docking and homing , 2017, OCEANS 2017 – Anchorage.

[7]  J. Kowalski,et al.  Spatially varying heat flux driven close-contact melting – A Lagrangian approach , 2017 .

[8]  Dirk Abel,et al.  DVL-aided Navigation Filter for Maritime Applications , 2018 .

[9]  Christoph Waldmann,et al.  Performance data of a pneumatic variable buoyancy engine for a newly designed underwater glider , 2016, OCEANS 2016 MTS/IEEE Monterey.

[10]  W. Atwell,et al.  A deterministic electron, photon, proton and heavy ion transport suite for the study of the Jovian moon Europa , 2011 .

[11]  Laura Lindzey,et al.  The ARTEMIS under‐ice AUV docking system , 2018, J. Field Robotics.

[12]  L. Prockter,et al.  Evidence for subduction in the ice shell of Europa , 2014 .

[13]  F. Soldovieri,et al.  Radar evidence of subglacial liquid water on Mars , 2018, Science.

[14]  C. McKay,et al.  The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. , 2008, Astrobiology.

[16]  C. McKay,et al.  Titan as the Abode of Life , 2016, Life.

[17]  R. Srama,et al.  A salt-water reservoir as the source of a compositionally stratified plume on Enceladus , 2011, Nature.

[18]  Jonathan I. Lunine,et al.  Ocean worlds exploration , 2017 .

[19]  L.L. Whitcomb,et al.  Recent Advances in Synchronous-Clock One-Way-Travel-Time Acoustic Navigation , 2006, OCEANS 2006.

[20]  C. McKay,et al.  Possible sources for methane and C2–C5 organics in the plume of Enceladus , 2012 .

[21]  A. Diez Liquid water on Mars , 2018, Science.

[22]  M. Hildebrandt,et al.  Design and test of a robust docking system for hovering AUVs , 2012, 2012 Oceans.

[23]  Ulf Bestmann,et al.  Tightly coupled navigation system of a differential magnetometer system and a MEMS-IMU for Enceladus , 2018, 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS).

[24]  João Quintas,et al.  An Integrated System for Geophysical Navigation of Autonomous Underwater Vehicles. , 2018 .

[25]  D. A. Patthoff,et al.  A fracture history on Enceladus provides evidence for a global ocean , 2011 .

[26]  J. Kowalski,et al.  Melting probe technology for subsurface exploration of extraterrestrial ice – Critical refreezing length and the role of gravity , 2018, Icarus.