Rainbow hamilton cycles in random graphs

One of the most famous results in the theory of random graphs establishes that the threshold for Hamiltonicity in the Erdi¾?s-Renyi random graph Gn,p is around p~logn+loglognn. Much research has been done to extend this to increasingly challenging random structures. In particular, a recent result by Frieze determined the asymptotic threshold for a loose Hamilton cycle in the random 3-uniform hypergraph by connecting 3-uniform hypergraphs to edge-colored graphs.

[1]  Simmy Bank Comment 1 , 1990 .

[2]  Alan M. Frieze,et al.  Packing tight Hamilton cycles in 3-uniform hypergraphs , 2012 .

[3]  Alan M. Frieze,et al.  Multicoloured Hamilton cycles in random graphs; an anti-Ramsey threshold , 1995, Electron. J. Comb..

[4]  Carsten Thomassen,et al.  Path and cycle sub-ramsey numbers and an edge-colouring conjecture , 1986, Discret. Math..

[5]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[6]  János Komlós,et al.  Limit distribution for the existence of hamiltonian cycles in a random graph , 1983, Discret. Math..

[7]  Alan M. Frieze,et al.  Packing hamilton cycles in random and pseudo-random hypergraphs , 2012, Random Struct. Algorithms.

[8]  Alan M. Frieze,et al.  Multicoloured Hamilton Cycles , 1995, Electron. J. Comb..

[9]  Alan M. Frieze An Algorithm for Finding Hamilton Cycles in Random Directed Graphs , 1988, J. Algorithms.

[10]  J. Kahn,et al.  Factors in random graphs , 2008 .

[11]  Alan M. Frieze,et al.  Multicolored Trees in Random Graphs , 1994, Random Struct. Algorithms.

[12]  Béla Bollobás,et al.  Random Graphs , 1985 .

[13]  Colin McDiarmid General first-passage percolation , 1983 .

[14]  Alan M. Frieze,et al.  Multi-Coloured Hamilton Cycles in Random Edge-Coloured Graphs , 2002, Combinatorics, Probability and Computing.

[15]  Brendan D. McKay,et al.  Asymptotic enumeration by degree sequence of graphs with degreeso(n1/2) , 1991, Comb..

[16]  A. Frieze ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS , 1988 .

[17]  Colin Cooper,et al.  Hamilton cycles in random graphs and directed graphs , 2000 .

[18]  Alan M. Frieze,et al.  Loose Hamilton Cycles in Random 3-Uniform Hypergraphs , 2010, Electron. J. Comb..

[19]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[20]  Alan M. Frieze,et al.  Packing tight Hamilton cycles in 3-uniform hypergraphs , 2011, SODA '11.

[21]  Svante Janson,et al.  Rainbow Hamilton cycles in random regular graphs , 2007, Random Struct. Algorithms.

[22]  Colin McDiarmid General percolation and random graphs , 1981, Advances in Applied Probability.

[23]  Béla Bollobás,et al.  Almost all Regular Graphs are Hamiltonian , 1983, European journal of combinatorics (Print).