Characterizing a superconducting charge qubit via environmental noise

In this paper, we propose a technique to characterise the energy level structure of a superconducting charge qubit. The technique relies on the backreaction of a solid-state qubit on its environment and the incoherent transfer of energy from a high frequency mode to a low frequency mode due to the stochastic transitions of the qubit between energy eigenstates. We consider a coupled system consisting of a model charge qubit and several classical degrees of freedom. The qubit is coupled to three electromagnetic modes: a low frequency bias field, a higher frequency mode (which is used to pump the qubit from the ground state to an excited state), and a lossy reservoir (which represents the cavity that contains the qubit and control fields). The reservoir provides a mechanism to allow the qubit to dissipate energy and to induce spontaneous decays from an excited state into the ground state. We show that these spontaneous decays can have a significant effect on the noise in the classical bias field, and that this noise can be used to characterise the energy level structure of the qubit.