A Review of Stick–Slip Nanopositioning Actuators

There is a surge in the development of actuators based on the stick–slip of piezoelectric actuators in the past decade for the advantages of nanoscale resolution and long travel distances. These actuators, termed PSTA (piezoelectric stick–slip actuators), are widely used in chip assembly and cell manipulation. This chapter provides a comprehensive review of PSTA systems. Reported PSTAs are generalized with two specific principles which can be considered as a framework to further classify other PSTAs. In addition, the applications of PSTAs are categorized into two groups according to the number of degrees of freedom (DOF). This chapter also discusses driving signals to actuate different structures of PSTAs and control methods to achieve high positioning resolutions.

[1]  Kee-Joe Lim,et al.  Fabrication and characteristics of impact type ultrasonic motor , 2007 .

[2]  Lu Qiu-hong The Study on Miniature Inertial Piezo-actuators , 2004 .

[3]  Weibin Rong,et al.  A 3D stick-slip nanopositioner for nanomanipulation , 2011, 2011 IEEE International Conference on Mechatronics and Automation.

[4]  Khaled Karrai,et al.  Slip-stick step-scanner for scanning probe microscopy , 2005 .

[5]  Jan Swevers,et al.  Modification of the Leuven integrated friction model structure , 2002, IEEE Trans. Autom. Control..

[6]  A. Volodin,et al.  Low‐temperature scanning tunneling microscope with a reliable piezoelectrical coarse approach mechanism , 1993 .

[7]  Babak Sedghi,et al.  Control Design of Hybrid Systems via Dehybridization , 2003 .

[8]  Oystein Fischer,et al.  A vertical piezoelectric inertial slider , 1990 .

[9]  Toshiro Higuchi,et al.  A novel precision positioning table utilizing impact force of spring-mounted piezoelectric actuator—part II: theoretical analysis , 2003 .

[10]  Joseph W. Lyding,et al.  Inertial tip translator for a scanning tunneling microscope , 1993 .

[11]  Mathias Göken,et al.  Scanning tunneling microscopy in UHV with an X,Y,Z micropositioner , 1994 .

[12]  M. Kurosawa,et al.  A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[13]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[14]  T. Y. Ng,et al.  Optimization of a piezoelectric ceramic actuator , 2000 .

[15]  Shuo-Hung Chang,et al.  Design and performance of a piezoelectric actuated precise rotary positioner , 2006 .

[16]  J. R. Greene,et al.  A simple dynamic piezoelectric X‐Y translation stage suitable for scanning probe microscopes , 1993 .

[17]  N. Agraït,et al.  Vertical inertial piezoelectric translation device for a scanning tunneling microscope , 1992 .

[18]  Chih-Liang Chu,et al.  A novel long-travel piezoelectric-driven linear nanopositioning stage , 2006 .

[19]  C. A. Brockley,et al.  The role of the rate of application of the tangential force in determining the static friction coefficient , 1973 .

[20]  Toshiro Higuchi,et al.  Three DOF parallel link mechanism utilizing smooth impact drive mechanism , 2002 .

[21]  Sergio Pellegrino,et al.  Inertial Stick-Slip Actuator for Active Control of Shape and Vibration , 1997 .

[22]  Sun Lining Designing and Dynamic Modeling of 1D Nanopositioner Based on Stick-slip Motion Principle , 2012 .

[23]  H. Güntherodt,et al.  Piezoelectric inertial stepping motor with spherical rotor , 1992 .

[24]  Yutaka Yamagata,et al.  Improvement of Velocity of Impact Drive Mechanism by Controlling Friction. , 1992 .

[25]  Frank Claeyssen,et al.  MRI-Compliant Linear Piezo Micro-Motors for Medical Implants and Robotic Surgery Applications , 2010 .

[26]  龍一 吉田,et al.  スムーズインパクト駆動機構(SIDM)の開発 , 1999 .

[27]  D. Pohl Dynamic piezoelectric translation devices , 1987 .

[28]  V. N. Yakimov Vertical ramp-actuated inertial micropositioner with a rolling-balls guide , 1997 .

[29]  Romeo Ortega,et al.  Necessary and sufficient conditions for passivity of the LuGre friction model , 2000, IEEE Trans. Autom. Control..

[30]  S. H. Chang,et al.  A high resolution long travel friction-drive micropositioner with programmable step size , 1999 .

[31]  Frank Claeyssen,et al.  Stepping Piezoelectric Actuators Based on APAs , 2008 .

[32]  Manfred H. Jericho,et al.  A vertical/horizontal two‐dimensional piezoelectric driven inertial slider micropositioner for cryogenic applications , 1992 .

[33]  N. S. Murali,et al.  Effect of friction on the performance of inertial slider , 2008 .

[34]  Zhang Hai Piezo impact drive mechanism for precise approach and manipulation , 2000 .

[35]  Jan Swevers,et al.  An integrated friction model structure with improved presliding behavior for accurate friction compensation , 1998, IEEE Trans. Autom. Control..

[36]  Jean-Pol Vigneron,et al.  Vertical two‐dimensional piezoelectric inertial slider for scanning tunneling microscope , 1993 .

[37]  Rong-Fong Fung,et al.  Hysteresis identification and dynamic responses of the impact drive mechanism , 2005 .

[38]  Hannes Bleuler,et al.  Position feedback for microrobots based on scanning probe microscopy , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[39]  P. Dahl Solid Friction Damping of Mechanical Vibrations , 1976 .

[40]  Reymond Clavel,et al.  Piezoactuators for motion control from centimeter to nanometer , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[41]  Toshiro Higuchi,et al.  A micropositioning device for precision automatic assembly using impact force of piezoelectric elements , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[42]  Qingyou Lu,et al.  How are the behaviors of piezoelectric inertial sliders interpreted? , 2012, The Review of scientific instruments.

[43]  K.J. Astrom,et al.  Revisiting the LuGre friction model , 2008, IEEE Control Systems.

[44]  J Y Peng,et al.  Modeling of Piezoelectric-Driven Stick–Slip Actuators , 2011, IEEE/ASME Transactions on Mechatronics.

[45]  Bernard Friedland,et al.  On the Modeling and Simulation of Friction , 1990, 1990 American Control Conference.

[46]  Håkan Olin,et al.  Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion , 2003 .

[47]  Brian Armstrong-Hélouvry,et al.  Control of machines with friction , 1991, The Kluwer international series in engineering and computer science.

[48]  Jean-Marc Breguet,et al.  Stick and slip actuators: design, control, performances and applications , 1998, MHA'98. Proceedings of the 1998 International Symposium on Micromechatronics and Human Science. - Creation of New Industry - (Cat. No.98TH8388).

[49]  Hydrodynamics from the Dp-brane , 2007, hep-th/0703093.

[50]  J. Hesselbach,et al.  Development of a two-degree-of-freedom piezoelectric rotary-linear actuator with high driving force and unlimited linear movement , 2006 .

[51]  Carlos Canudas de Wit,et al.  A modified EW-RLS algorithm for systems with bounded disturbances , 1990, Autom..

[52]  Wenjun Zhang,et al.  Piezoelectric friction–inertia actuator—a critical review and future perspective , 2012 .

[53]  Fred S. Eastman The Design of Flexure Pivots , 1937 .

[54]  Q. Zhang,et al.  Development and characterization of a novel piezoelectric-driven stick-slip actuator with anisotropic-friction surfaces , 2012 .

[55]  P. R. Ouyang,et al.  Micro-motion devices technology: The state of arts review , 2008 .

[56]  Philippe Lutz,et al.  Voltage/Frequency Proportional Control of Stick-Slip Micropositioning Systems , 2008, IEEE Transactions on Control Systems Technology.

[57]  M. Switkes,et al.  Simple retrofittable long‐range x–y translation system for scanned probe microscopes , 1996 .

[58]  Manfred H. Jericho,et al.  Simple two-dimensional piezoelectric micropositioner for a scanning tunneling microscope , 1990 .

[59]  J. M. Paros,et al.  Flexure Pivots to Replace Knife Edge and Ball Bearing , 1965 .

[60]  J K Gimzewski,et al.  Vertical inertial sliding drive for coarse and fine approaches in scanning probe microscopy. , 2007, The Review of scientific instruments.

[61]  P. Niedermann,et al.  Simple piezoelectric translation device , 1988 .

[62]  Elizabeth A. Croft,et al.  The reduction of stick-slip friction in hydraulic actuators , 2003 .

[63]  S. Reymond,et al.  Low temperature scanning contact potentiometry , 2004 .

[64]  Yasuhiro Okamoto,et al.  Development of linear actuators using piezoelectric elements , 1998 .

[65]  J. Paros How to design flexure hinges , 1965 .

[66]  J W Li,et al.  Thermal effect on piezoelectric stick-slip actuator systems. , 2008, The Review of scientific instruments.