Techniques to sort Bessel beams

In this work we will present two techniques for the measurement of superimposed higher-order Bessel beams. In the first technique we will outline a simple approach using only a spatial light modulator and a Fourier transforming lens to decompose the OAM spectrum of an optical field. We test this approach on symmetric and non-symmetric superpositions of non-diffracting higher-order Bessel beams. Our second procedure consists of two refractive optical elements which perform a Cartesian to log-polar coordinate transformation, translating helically phased beams into a transverse phase gradient. By introducing two cylindrical lenses we can focus each of the azimuthal modes associated with each Bessel beam to a different lateral position in the Fourier plane, while separating the radial wave-vectors in the image-plane.

[1]  Andrew Forbes,et al.  Efficient sorting of Bessel beams. , 2013, Optics express.

[2]  D M Cottrell,et al.  Nondiffracting interference patterns generated with programmable spatial light modulators. , 1996, Applied optics.

[3]  S. Barnett,et al.  Measuring the orbital angular momentum of a single photon. , 2002, Physical review letters.

[4]  Robert W. Boyd,et al.  Quantum Correlations in Optical Angle–Orbital Angular Momentum Variables , 2010, Science.

[5]  A. Friberg,et al.  Holographic generation of diffraction-free beams. , 1988, Applied optics.

[6]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[7]  C. Paterson,et al.  Higher-order Bessel waves produced by axicon-type computer-generated holograms , 1996 .

[8]  A. Vaziri,et al.  Experimental two-photon, three-dimensional entanglement for quantum communication. , 2002, Physical review letters.

[9]  D M Cottrell,et al.  Intensity and phase measurements of nondiffracting beams generated with a magneto-optic spatial light modulator. , 1996, Applied optics.

[10]  Miles J Padgett,et al.  Measuring orbital angular momentum superpositions of light by mode transformation. , 2011, Optics letters.

[11]  Guy Indebetouw,et al.  Nondiffracting optical fields: some remarks on their analysis and synthesis , 1989 .

[12]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[13]  J. P. Woerdman,et al.  Astigmatic laser mode converters and transfer of orbital angular momentum , 1993 .

[14]  Robert R. Alfano,et al.  The Poynting vector and angular momentum of Airy beams. , 2008 .

[15]  Z. Bouchal,et al.  Self-reconstruction of a distorted nondiffracting beam , 1998 .

[16]  Olof Bryngdahl,et al.  Geometrical transformations in optics , 1974 .

[17]  T. A. Wiggins,et al.  Production and uses of diffractionless beams , 1991 .

[18]  Miceli,et al.  Diffraction-free beams. , 1987, Physical review letters.

[19]  J Turunen,et al.  Realization of general nondiffracting beams with computer-generated holograms. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[20]  Shinichi Komatsu,et al.  Scale and rotation invariant real time optical correlator using computer generated hologram , 1983 .

[21]  Johannes Courtial,et al.  Measurement of the light orbital angular momentum spectrum using an optical geometric transformation , 2011 .

[22]  Victor A. Soifer,et al.  Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element , 2000 .

[23]  Johannes Courtial,et al.  Refractive elements for the measurement of the orbital angular momentum of a single photon. , 2012, Optics express.

[24]  W. J. Hossack,et al.  Coordinate Transformations with Multiple Computer-generated Optical Elements , 1987 .

[25]  T. Wei,et al.  Beating the channel capacity limit for linear photonic superdense coding , 2008 .

[26]  Andrew Forbes,et al.  Azimuthal decomposition with digital holograms. , 2012, Optics express.

[27]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[28]  Choi,et al.  Holographic nondiverging hollow beam. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[29]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[30]  Kishan Dholakia,et al.  Generation of high-order Bessel beams by use of an axicon , 2000 .

[31]  Andrew Forbes,et al.  Quantitative measurement of the orbital angular momentum density of light. , 2012, Applied optics.

[32]  Andrew Forbes,et al.  Poynting vector and orbital angular momentum density of superpositions of Bessel beams. , 2011, Optics express.

[33]  Andrew Forbes,et al.  Measuring the rotation rates of superpositions of higher-order Bessel beams , 2012 .

[34]  M. Lavery,et al.  Efficient sorting of orbital angular momentum states of light. , 2010, Physical review letters.

[35]  Andrew Forbes,et al.  Robust interferometer for the routing of light beams carrying orbital angular momentum , 2011 .