Ammonia for hydrogen storage: challenges and opportunities

The possibility of using ammonia as a hydrogen carrier is discussed. Compared to other hydrogen storage materials, ammonia has the advantages of a high hydrogen density, a well-developed technology for synthesis and distribution, and easy catalytic decomposition. Compared to hydrocarbons and alcohols, it has the advantage that there is no CO2 emission at the end user. The drawbacks are mainly the toxicity of liquid ammonia and the problems related to trace amounts of ammonia in the hydrogen after decomposition. Storage of ammonia in metal ammine salts is discussed, and it is shown that this maintains the high volumetric hydrogen density while alleviating the problems of handling the ammonia. Some of the remaining challenges for research in ammonia as a hydrogen carrier are outlined.

[1]  J. Nørskov,et al.  Indirect, reversible high-density hydrogen storage in compact metal ammine salts. , 2008, Journal of the American Chemical Society.

[2]  J. Nørskov,et al.  Indirect hydrogen storage in metal ammines , 2008 .

[3]  Q. Ma,et al.  Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen , 2007 .

[4]  Xiaofeng Liu,et al.  Hydriding characteristics of Mg2Ni prepared by mechanical milling of the product of hydriding combustion synthesis , 2007 .

[5]  Horst Hahn,et al.  Diborane Release from LiBH4/Silica-Gel Mixtures and the Effect of Additives , 2007 .

[6]  P. Ramachandran,et al.  Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration. , 2007, Inorganic chemistry.

[7]  M. Fichtner,et al.  Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2 , 2007 .

[8]  Michael A. Miller,et al.  Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks , 2007 .

[9]  J. Charland,et al.  A Direct Ammonia Fuel Cell Using Barium Cerate Proton Conducting Electrolyte Doped With Gadolinium and Praseodymium , 2007 .

[10]  M. Nielsen,et al.  Nanoscale structural characterization of Mg(NH3)6Cl2 during NH3 desorption: An in situ small angle X-ray scattering study , 2007 .

[11]  G. Cao,et al.  Coherent carbon cryogel-ammonia borane nanocomposites for H2 storage. , 2007, The journal of physical chemistry. B.

[12]  G. Fournier,et al.  High performance direct ammonia solid oxide fuel cell , 2006 .

[13]  O. Hansen,et al.  Promoted Ru on high-surface area graphite for efficient miniaturized production of hydrogen from ammonia , 2006 .

[14]  Tejs Vegge,et al.  Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory. , 2006, Physical chemistry chemical physics : PCCP.

[15]  E. Jeon,et al.  Mechanochemical synthesis and thermal decomposition of zinc borohydride , 2006 .

[16]  G. Sandrock,et al.  Alkali metal hydride doping of α-AlH3 for enhanced H2 desorption kinetics , 2006 .

[17]  Synthesis and crystal structure of Li4BH4(NH2)3. , 2006, Chemical communications.

[18]  J. Nørskov,et al.  A high-density ammonia storage/delivery system based on Mg(NH3)6Cl2 for SCR-DeNOx in vehicles , 2006 .

[19]  P. Vie,et al.  Effect of ammonia on the performance of polymer electrolyte membrane fuel cells , 2006 .

[20]  Claus H. Christensen,et al.  Towards an ammonia-mediated hydrogen economy? , 2006 .

[21]  J. Nørskov,et al.  Generation of nanopores during desorption of NH3 from Mg(NH3)6Cl2. , 2006, Journal of the American Chemical Society.

[22]  Xia Tang,et al.  IV.A.1 High Density Hydrogen Storage System Demonstration Using NaAlH 4 Based Complex Compound Hydrides , 2006 .

[23]  A. Nelson,et al.  Methane Oxidation Over M–8YSZ and M–CeO2/8YSZ (M = Ni, Cu, Co, Ag) Catalysts , 2006 .

[24]  George Crabtree,et al.  The hydrogen economy , 2006, IEEE Engineering Management Review.

[25]  Timo Kivisaari,et al.  Wärtsilä - Haldor Topsøe SOFC Test System , 2005 .

[26]  A. Pedersen,et al.  Dehydrogenation kinetics of as-received and ball-milled LiAlH4 , 2005 .

[27]  J. Nørskov,et al.  Metal ammine complexes for hydrogen storage , 2005 .

[28]  L. Glenn Thoughts on Starting the Hydrogen Economy , 2005 .

[29]  G. Botte,et al.  On the use of ammonia electrolysis for hydrogen production , 2005 .

[30]  J. Nørskov,et al.  Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst , 2005 .

[31]  O. Hansen,et al.  Catalytic ammonia decomposition: miniaturized production of COx-free hydrogen for fuel cells , 2005 .

[32]  Florian Mertens,et al.  Reversible storage of hydrogen in destabilized LiBH4. , 2005, The journal of physical chemistry. B.

[33]  J. Charland,et al.  An intermediate temperature direct ammonia fuel cell using a proton conducting electrolyte , 2005 .

[34]  G. Sandrock,et al.  Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles , 2005 .

[35]  J. L. Paulsen,et al.  Safety assessment of ammonia as a transport fuel , 2005 .

[36]  Yang Wang,et al.  A new integrated approach of coal gasification: the concept and preliminary experimental results , 2004 .

[37]  S. Yin,et al.  A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications , 2004 .

[38]  Richard I. Masel,et al.  Development of a microreactor for the production of hydrogen from ammonia , 2004 .

[39]  Tejs Vegge,et al.  Structural stability of complex hydrides: LiBH4 revisited. , 2004, Physical review letters.

[40]  S. Srinivasan,et al.  Rehydrogenation and cycling studies of dehydrogenated NaAlH4 , 2004 .

[41]  W. Raróg-Pilecka,et al.  Ammonia decomposition over the carbon-based ruthenium catalyst promoted with barium or cesium , 2003 .

[42]  Andreas Züttel,et al.  Materials for hydrogen storage , 2003 .

[43]  Hartmut Spliethoff,et al.  Biomass and fossil fuel conversion by pressurised fluidised bed gasification using hot gas ceramic filters as gas cleaning , 2003 .

[44]  Andreas Züttel,et al.  LiBH4 a new hydrogen storage material , 2003 .

[45]  Robert Schlögl,et al.  Catalytic synthesis of ammonia-a "never-ending story"? , 2003, Angewandte Chemie.

[46]  William J. Thomson,et al.  Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications , 2002 .

[47]  D. Goodman,et al.  Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications , 2001 .

[48]  J. Nørskov,et al.  Ammonia synthesis at low temperatures , 2000 .

[49]  Viktor Hacker,et al.  Alkaline fuel cells applications , 2000 .

[50]  Caine M. Finnerty,et al.  Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane , 1998 .

[51]  R. Metkemeijer,et al.  Comparison of ammonia and methanol applied indirectly in a hydrogen fuel cell , 1994 .

[52]  R. Metkemeijer,et al.  Ammonia as a feedstock for a hydrogen fuel cell; reformer and fuel cell behaviour , 1994 .

[53]  E. Lépinasse Production de froid par couplage de réacteurs solide-gaz I: Analyse des performances de tels systèmesCold production through coupling of solid-gas reactors I: Performance analysis , 1994 .

[54]  A. M. Metwally,et al.  Two-dimensional dynamic analysis of metal hydride hydrogen energy storage conduction bed models , 1993 .

[55]  E. Akiba,et al.  Magnesium-nickel alloy hydride compacts prepared by cylindrical explosion shock compression , 1991 .

[56]  I. Jacob,et al.  Experimental measurements and general conclusions on the effective thermal conductivity of powdered metal hydrides , 1984 .

[57]  L. Green An ammonia energy vector for the hydrogen economy , 1982 .

[58]  Wilhely Biltz Beiträge zur systematischen Verwandtschaftslehre XXIV. Über das Vermögen kristallisierter Salze, Ammoniak zu binden , 1923 .

[59]  F. Ephraim Über die Natur der Nebenvalenzen. Erste Mitteilung: Metallammoniak‐Verbindungen , 1912 .