Reduction of computation time in building energy performance simulation programs by applying tearing techniques
暂无分享,去创建一个
Ismael R. Maestre | Francisco Javier González Gallero | Juan Luis Foncubierta Blázquez | J. Daniel Mena Baladés | Juan Luis Foncubierta Blázquez | F. J. G. Gallero | I. Maestre | J. Baladés
[1] Philippe Rigo,et al. A review on simulation-based optimization methods applied to building performance analysis , 2014 .
[2] Pascal Joly,et al. Preconditioned biconjugate gradient methods for numerical reservoir simulation , 1990 .
[3] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[4] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.
[5] D. Rose,et al. Partitioning, tearing and modification of sparse linear systems , 1974 .
[6] Peter Fritzson,et al. Survey of appropriate matching algorithms for large scale systems of differential algebraic equations , 2012 .
[7] Sanguthevar Rajasekaran,et al. Fast algorithms for placing large entries along the diagonal of a sparse matrix , 2010, J. Comput. Appl. Math..
[8] N. S. Mendelsohn,et al. Coverings of Bipartite Graphs , 1958, Canadian Journal of Mathematics.
[9] Iain S. Duff,et al. On Algorithms For Permuting Large Entries to the Diagonal of a Sparse Matrix , 2000, SIAM J. Matrix Anal. Appl..
[10] Fabian M. Uriarte,et al. On Kron's diakoptics , 2012 .
[11] Patrick Dewilde. On the LU factorization of infinite systems of semi-separable equations , 2012 .
[12] Kurt Mehlhorn,et al. Computing a Maximum Cardinality Matching in a Bipartite Graph in Time O(^1.5 sqrt m/log n) , 1991, Inf. Process. Lett..
[13] A. Sameh,et al. A tearing-based hybrid parallel banded linear system solver , 2009 .
[14] Jean-François Lemieux,et al. A parallel Jacobian-free Newton-Krylov solver for a coupled sea ice-ocean model , 2014, J. Comput. Phys..
[15] D. R. Fulkerson,et al. Flows in Networks. , 1964 .
[16] D. Keyes,et al. Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .
[17] D. V. Steward. Partitioning and Tearing Systems of Equations , 1965 .
[18] Simone Scacchi,et al. A multilevel hybrid Newton–Krylov–Schwarz method for the Bidomain model of electrocardiology , 2011 .
[19] U. Langer,et al. Coupled Finite and Boundary Element Tearing and Interconnecting solvers for nonlinear potential problems , 2006 .
[20] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[21] W. Beckman,et al. Solar Engineering of Thermal Processes , 1985 .
[22] Robert E. Tarjan,et al. Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..
[23] Philip Haves,et al. Efficient solution strategies for building energy system simulation , 2001 .
[24] Stephen J. Wright. Modified Cholesky Factorizations in Interior-Point Algorithms for Linear Programming , 1999, SIAM J. Optim..
[25] A. London,et al. Compact heat exchangers , 1960 .
[26] Iain S. Duff,et al. The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..
[27] David W. Zingg,et al. A Jacobian-free Newton-Krylov algorithm for compressible turbulent fluid flows , 2009, J. Comput. Phys..
[28] Feng-Nan Hwang,et al. Parallel pseudo-transient Newton--Krylov--Schwarz continuation algorithms for bifurcation analysis of incompressible sudden expansion flows , 2010 .
[29] Alex Pothen,et al. Computing the block triangular form of a sparse matrix , 1990, TOMS.
[30] Predrag S. Stanimirovic,et al. Full-rank representations of outer inverses based on the QR decomposition , 2012, Appl. Math. Comput..