Unleashing the Potential of Data-Driven Networking

The last few years have witnessed the coming of age of data-driven paradigm in various aspects of computing (partly) empowered by advances in distributed system research (cloud computing, MapReduce, etc.). In this paper, we observe that the benefits can flow the opposite direction: the design and management of networked systems can be improved by data-driven paradigm. To this end, we present DDN, a new design framework for network protocols based on data-driven paradigm. We argue that DDN has the potential to significantly achieve better performance through harnessing more data than one single flow. Furthermore, we systematize existing instantiations of DDN by creating a unified framework for DDN, and use the framework to shed light on the common challenges and reusable design principles. We believe that by systematizing this paradigm as a broader community, we can unleash the unharnessed potential of DDN.

[1]  Sally Floyd,et al.  Difficulties in simulating the internet , 2001, TNET.

[2]  Doina Precup,et al.  Eligibility Traces for Off-Policy Policy Evaluation , 2000, ICML.

[3]  Xi Liu,et al.  EONA: Experience-Oriented Network Architecture , 2014, HotNets.

[4]  Yin Zhang,et al.  BGP routing stability of popular destinations , 2002, IMW '02.

[5]  Vyas Sekar,et al.  A case for a coordinated internet video control plane , 2012, SIGCOMM '12.

[6]  Vyas Sekar,et al.  Via: Improving Internet Telephony Call Quality Using Predictive Relay Selection , 2016, SIGCOMM.

[7]  Yair Zick,et al.  Algorithmic Transparency via Quantitative Input Influence , 2017 .

[8]  David D. Clark,et al.  A knowledge plane for the internet , 2003, SIGCOMM '03.

[9]  Hari Balakrishnan,et al.  TCP ex machina: computer-generated congestion control , 2013, SIGCOMM.

[10]  Peter Norvig,et al.  The Unreasonable Effectiveness of Data , 2009, IEEE Intelligent Systems.

[11]  Amit Agarwal,et al.  An argument for increasing TCP's initial congestion window , 2010, CCRV.

[12]  Srinivasan Seshan,et al.  SPAND: Shared Passive Network Performance Discovery , 1997, USENIX Symposium on Internet Technologies and Systems.

[13]  Xi Liu,et al.  C3: Internet-Scale Control Plane for Video Quality Optimization , 2015, NSDI.

[14]  Amin Vahdat,et al.  BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed Computing , 2015, Comput. Commun. Rev..

[15]  Vyas Sekar,et al.  CFA: A Practical Prediction System for Video QoE Optimization , 2016, NSDI.

[16]  Vyas Sekar,et al.  Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with FESTIVE , 2012, CoNEXT '12.

[17]  Aleksandrs Slivkins,et al.  Contextual Bandits with Similarity Information , 2009, COLT.

[18]  Van Jacobson,et al.  Networking named content , 2009, CoNEXT '09.

[19]  Ramesh K. Sitaraman,et al.  Video Stream Quality Impacts Viewer Behavior: Inferring Causality Using Quasi-Experimental Designs , 2012, IEEE/ACM Transactions on Networking.

[20]  John Langford,et al.  Doubly Robust Policy Evaluation and Learning , 2011, ICML.

[21]  John Langford,et al.  A Multiworld Testing Decision Service , 2016, ArXiv.

[22]  Feng Wang,et al.  Crowdsourced live streaming over the cloud , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[23]  Randy Bush,et al.  From Paris to Tokyo: on the suitability of ping to measure latency , 2013, Internet Measurement Conference.

[24]  Paramvir Bahl,et al.  Low Latency Geo-distributed Data Analytics , 2015, SIGCOMM.

[25]  Wei Chu,et al.  A contextual-bandit approach to personalized news article recommendation , 2010, WWW '10.

[26]  Mo Dong,et al.  PCC: Re-architecting Congestion Control for Consistent High Performance , 2014, NSDI.

[27]  Arun Venkataramani,et al.  iPlane: an information plane for distributed services , 2006, OSDI '06.

[28]  Arun Sharma,et al.  Social Hash: An Assignment Framework for Optimizing Distributed Systems Operations on Social Networks , 2016, NSDI.

[29]  Markku Antikainen,et al.  Denial-of-service attacks in OpenFlow SDN networks , 2015, 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM).

[30]  Michael J. Freedman,et al.  Aggregation and Degradation in JetStream: Streaming Analytics in the Wide Area , 2014, NSDI.

[31]  Nick McKeown,et al.  Confused, timid, and unstable: picking a video streaming rate is hard , 2012, Internet Measurement Conference.

[32]  Ming Zhang,et al.  Efficiently Delivering Online Services over Integrated Infrastructure , 2016, NSDI.

[33]  Yair Zick,et al.  Algorithmic Transparency via Quantitative Input Influence: Theory and Experiments with Learning Systems , 2016, 2016 IEEE Symposium on Security and Privacy (SP).

[34]  Michael I. Jordan,et al.  The Missing Piece in Complex Analytics: Low Latency, Scalable Model Management and Serving with Velox , 2014, CIDR.

[35]  Jerome H. Saltzer,et al.  End-to-end arguments in system design , 1984, TOCS.

[36]  C. Abdallah,et al.  Delayed Positive Feedback Can Stabilize Oscillatory Systems , 1993, 1993 American Control Conference.

[37]  V. Jacobson,et al.  Congestion avoidance and control , 1988, CCRV.

[38]  Fahad R. Dogar,et al.  Leveraging the Power of Cloud for Reliable Wide Area Communication , 2015, HotNets.

[39]  QUTdN QeO,et al.  Random early detection gateways for congestion avoidance , 1993, TNET.

[40]  Paulo J. G. Lisboa,et al.  Making machine learning models interpretable , 2012, ESANN.

[41]  Philippe Rigollet,et al.  Nonparametric Bandits with Covariates , 2010, COLT.

[42]  Martin Pál,et al.  Contextual Multi-Armed Bandits , 2010, AISTATS.

[43]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[44]  Ion Stoica,et al.  Ernest: Efficient Performance Prediction for Large-Scale Advanced Analytics , 2016, NSDI.

[45]  Yi Sun,et al.  CS2P: Improving Video Bitrate Selection and Adaptation with Data-Driven Throughput Prediction , 2016, SIGCOMM.