Minimal Non-Uniform Sampling For Multi-Dimensional Period Identification
暂无分享,去创建一个
[1] Dan E. Dudgeon,et al. Multidimensional Digital Signal Processing , 1983 .
[2] Goodhew. The Basics of Crystallography and Diffraction , 1998 .
[3] P. P. Vaidyanathan,et al. Minimum number of possibly non-contiguous samples to distinguish two periods , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[4] Nikos D. Sidiropoulos,et al. Generalizing Carathéodory's uniqueness of harmonic parameterization to N dimensions , 2001, IEEE Trans. Inf. Theory.
[5] H. Smith. I. On systems of linear indeterminate equations and congruences , 1862, Proceedings of the Royal Society of London.
[6] C. Carathéodory,et al. Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .
[7] P. Vaidyanathan. Multirate Systems And Filter Banks , 1992 .
[8] B. Rupp. Biomolecular Crystallography: Principles, Practice, and Application to Structural Biology , 2009 .
[9] P. P. Vaidyanathan,et al. Arbitrarily Shaped Periods in Multidimensional Discrete Time Periodicity , 2015, IEEE Signal Processing Letters.
[10] Soo-Chang Pei,et al. Two-Dimensional Period Estimation by Ramanujan's Sum , 2017, IEEE Transactions on Signal Processing.
[11] Srikanth Venkata Tenneti,et al. Minimum Data Length for Integer Period Estimation , 2018, IEEE Transactions on Signal Processing.
[12] Andrew G. Klein,et al. A thread counting algorithm for art forensics , 2009, 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop.