On Edge-Disjoint Spanning Trees in a Randomly Weighted Complete Graph

Assume that the edges of the complete graph $K_n$ are given independent uniform $[0,1]$ edges weights. We consider the expected minimum total weight $\mu_k$ of $k\geq 2$ edge disjoint spanning trees. When $k$ is large we show that $\mu_k\approx k^2$. Most of the paper is concerned with the case $k=2$. We show that $\m_2$ tends to an explicitly defined constant and that $\mu_2\approx 4.1704288\ldots$.

[1]  S. Hakimi On the degrees of the vertices of a directed graph , 1965 .

[2]  Alan M. Frieze,et al.  A Note on Random Minimum Length Spanning Trees , 2000, Electron. J. Comb..

[3]  Johan Wästlund An easy proof of the $\zeta(2)$ limit in the random assignment problem , 2009 .

[4]  Wojciech Kordecki,et al.  Exact Expectation and Variance of Minimal Basis of Random Matroids , 2013, Discuss. Math. Graph Theory.

[5]  D. Aldous The ζ(2) limit in the random assignment problem , 2000, Random Struct. Algorithms.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Tomasz Łuczak,et al.  Size and connectivity of the k-core of a random graph , 1991 .

[8]  D. Bertsimas,et al.  The Minimum Spanning Tree Constant in Geometrical Probability and Under the Independent Model: A Unified Approach , 1992 .

[9]  Joel H. Spencer,et al.  Sudden Emergence of a Giantk-Core in a Random Graph , 1996, J. Comb. Theory, Ser. B.

[10]  Richard M. Karp,et al.  A Patching Algorithm for the Nonsymmetric Traveling-Salesman Problem , 1979, SIAM J. Comput..

[11]  Pu Gao,et al.  Arboricity and spanning-tree packing in random graphs with an application to load balancing , 2013, SODA.

[12]  C. Nash-Williams Decomposition of Finite Graphs Into Forests , 1964 .

[13]  Alan M. Frieze,et al.  On the value of a random minimum spanning tree problem , 1985, Discret. Appl. Math..

[14]  Alan M. Frieze,et al.  On the Length of a Random Minimum Spanning Tree , 2012, Combinatorics, Probability and Computing.

[15]  C. McDiarmid,et al.  On random minimum length spanning trees , 1989 .

[16]  A. Frieze,et al.  On the connectivity of randomm-orientable graphs and digraphs , 1982 .

[17]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[18]  Alan M. Frieze On large matchings and cycles in sparse random graphs , 1986, Discret. Math..

[19]  C. Nash-Williams Edge-disjoint spanning trees of finite graphs , 1961 .

[20]  Svante Janson,et al.  One, Two and Three Times log n/n for Paths in a Complete Graph with Random Weights , 1999, Combinatorics, Probability and Computing.

[21]  Alan M. Frieze,et al.  The shortest-path problem for graphs with random arc-lengths , 1985, Discret. Appl. Math..

[22]  B. Prabhakar,et al.  Proofs of the Parisi and Coppersmith‐Sorkin random assignment conjectures , 2005 .

[23]  Peter Sanders,et al.  The random graph threshold for k-orientiability and a fast algorithm for optimal multiple-choice allocation , 2007, SODA '07.

[24]  Svante Janson,et al.  A simple solution to the k-core problem , 2007, Random Struct. Algorithms.

[25]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[26]  Alan M. Frieze,et al.  Random Minimum Length Spanning Trees in Regular Graphs , 1998, Comb..

[27]  Alan M. Frieze On Random Symmetric Travelling Salesman Problems , 2004, Math. Oper. Res..

[28]  J. Michael Steele,et al.  On Frieze's χ(3) limit for lengths of minimal spanning trees , 1987, Discret. Appl. Math..

[29]  D. Aldous Asymptotics in the random assignment problem , 1992 .

[30]  M. Penrose Random minimal spanning tree and percolation on the N -cube , 1998 .

[31]  James G. Oxley,et al.  Matroid theory , 1992 .

[32]  R. Durrett Probability: Theory and Examples , 1993 .

[33]  Svante Janson,et al.  The Minimal Spanning Tree in a Complete Graph and a Functional Limit Theorem for Trees in a Random Graph , 1995, Random Struct. Algorithms.

[34]  Johan Wästlund The mean field traveling salesman and related problems , 2010 .

[35]  Svante Linusson,et al.  A proof of Parisi’s conjecture on the random assignment problem , 2003, math/0303214.