Topographic Representation of Numerosity in the Human Parietal Cortex

Number Sense Numerosity perception resembles primary sensory perception and, indeed, it has been called the number sense. As all primary senses are organized topographically in the cortex, Harvey et al. (p. 1123) tested the hypothesis that numerosity is also organized topographically. Applying ultrahighfield functional brain scanning and using custom-designed analysis, they confirmed that a topographical numerosity map occurs in the human parietal cortex, which displays conventional characteristics, such as a systematic relationship between the cortical location's preferred numerosity and cortical magnification and tuning width. There is a map of numerical magnitude in the human brain. Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory cortices contain topographic maps reflecting the structure of sensory organs. Are the cortical representation and processing of numerosity organized topographically, even though no sensory organ has a numerical structure? Using high-field functional magnetic resonance imaging (at a field strength of 7 teslas), we described neural populations tuned to small numerosities in the human parietal cortex. They are organized topographically, forming a numerosity map that is robust to changes in low-level stimulus features. The cortical surface area devoted to specific numerosities decreases with increasing numerosity, and the tuning width increases with preferred numerosity. These organizational properties extend topographic principles to the representation of higher-order abstract features in the association cortex.

[1]  W. R. Garner,et al.  Reaction time as a measure of span of attention. , 1948, The Journal of psychology.

[2]  R. Beaver,et al.  LARYNGOSCOPE , 1955, Definitions.

[3]  T. Powell,et al.  The basic uniformity in structure of the neocortex. , 1980, Brain : a journal of neurology.

[4]  Juliette Gardner Genesis , 1985 .

[5]  Stanislas Dehaene,et al.  Two mental calculation systems: A case study of severe acalculia with preserved approximation , 1991, Neuropsychologia.

[6]  Prentice Starkey,et al.  The early development of numerical reasoning , 1992, Cognition.

[7]  Stanislas Dehaene,et al.  Development of Elementary Numerical Abilities: A Neuronal Model , 1993, Journal of Cognitive Neuroscience.

[8]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[9]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[10]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[11]  Guillermo Sapiro,et al.  Creating connected representations of cortical gray matter for functional MRI visualization , 1997, IEEE Transactions on Medical Imaging.

[12]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[13]  S. Dehaene,et al.  The Number Sense: How the Mind Creates Mathematics. , 1998 .

[14]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[15]  H S Terrace,et al.  Ordering of the numerosities 1 to 9 by monkeys. , 1998, Science.

[16]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[17]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[18]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[19]  S. Dehaene,et al.  Event-related fMRI analysis of the cerebral circuit for number comparison. , 1999, Neuroreport.

[20]  Santiago Ramón y Cajal,et al.  Texture of the Nervous System of Man and the Vertebrates , 1999, Springer Vienna.

[21]  E. Spelke,et al.  Sources of mathematical thinking: behavioral and brain-imaging evidence. , 1999, Science.

[22]  C. Gallistel,et al.  Nonverbal Counting in Humans: The Psychophysics of Number Representation , 1999 .

[23]  J. Ashby References and Notes , 1999 .

[24]  B. Wandell,et al.  Visualization and Measurement of the Cortical Surface , 2000, Journal of Cognitive Neuroscience.

[25]  D J Heeger,et al.  Robust multiresolution alignment of MRI brain volumes , 2000, Magnetic resonance in medicine.

[26]  A. T. Smith,et al.  Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. , 2001, Cerebral cortex.

[27]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[28]  E Yacoub,et al.  Detection of the early decrease in fMRI signal in the motor area , 2001, Magnetic resonance in medicine.

[29]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[30]  David J. Freedman,et al.  Representation of the Quantity of Visual Items in the Primate Prefrontal Cortex , 2002, Science.

[31]  Vincent Walsh A theory of magnitude: common cortical metrics of time, space and quantity , 2003, Trends in Cognitive Sciences.

[32]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[33]  Robert O. Duncan,et al.  Cortical Magnification within Human Primary Visual Cortex Correlates with Acuity Thresholds , 2003, Neuron.

[34]  E. Miller,et al.  Coding of Cognitive Magnitude Compressed Scaling of Numerical Information in the Primate Prefrontal Cortex , 2003, Neuron.

[35]  Philippe Pinel,et al.  Tuning Curves for Approximate Numerosity in the Human Intraparietal Sulcus , 2004, Neuron.

[36]  G. Leuba,et al.  Comparison of neuronal and glial numerical density in primary and secondary visual cortex of man , 2004, Experimental Brain Research.

[37]  Andreas Nieder,et al.  A parieto-frontal network for visual numerical information in the monkey. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Heeger,et al.  Topographic organization for delayed saccades in human posterior parietal cortex. , 2005, Journal of neurophysiology.

[39]  Carol L Colby,et al.  Active Vision in Parietal and Extrastriate Cortex , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[40]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[41]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[42]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[43]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[45]  Nao Ninomiya,et al.  The 10th anniversary of journal of visualization , 2007, J. Vis..

[46]  Andreas Nieder,et al.  Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex , 2007, Proceedings of the National Academy of Sciences.

[47]  Elizabeth M Brannon,et al.  Basic Math in Monkeys and College Students , 2007, PLoS biology.

[48]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[49]  David J. Heeger,et al.  The effect of large veins on spatial localization with GE BOLD at 3 T: Displacement, not blurring , 2007, NeuroImage.

[50]  Stephen F. Goodwin,et al.  Sexual Dimorphism: Can You Smell the Difference? , 2008, Current Biology.

[51]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[52]  Sabine Kastner,et al.  Representation of Eye Movements and Stimulus Motion in Topographically Organized Areas of Human Posterior Parietal Cortex , 2008, The Journal of Neuroscience.

[53]  Justin Halberda,et al.  Individual differences in non-verbal number acuity correlate with maths achievement , 2008, Nature.

[54]  D. Burr,et al.  A Visual Sense of Number , 2007, Current Biology.

[55]  Pierre Pica,et al.  Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures , 2008, Science.

[56]  B. Spehar,et al.  The Foveal Confluence in Human Visual Cortex , 2009, The Journal of Neuroscience.

[57]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[58]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[59]  Bertrand Thirion,et al.  Deciphering Cortical Number Coding from Human Brain Activity Patterns , 2009, Current Biology.

[60]  Elizabeth M. Brannon,et al.  The Neural Development of an Abstract Concept of Number , 2009, Journal of Cognitive Neuroscience.

[61]  Andreas Nieder,et al.  Basic mathematical rules are encoded by primate prefrontal cortex neurons , 2010, Proceedings of the National Academy of Sciences.

[62]  B. Wandell,et al.  Mapping Hv4 and Ventral Occipital Cortex: the Venous Eclipse , 2022 .

[63]  Andrew T. Smith,et al.  Representation of eye position in the human parietal cortex. , 2010, Journal of neurophysiology.

[64]  B. Wandell,et al.  Cortical Maps and White Matter Tracts following Long Period of Visual Deprivation and Retinal Image Restoration , 2010, Neuron.

[65]  Midori Tokita,et al.  How might the discrepancy in the effects of perceptual variables on numerosity judgment be reconciled? , 2010, Attention, perception & psychophysics.

[66]  D. Samuel Schwarzkopf,et al.  The surface area of human V1 predicts the subjective experience of object size , 2010, Nature Neuroscience.

[67]  F. Kingdom,et al.  A common visual metric for approximate number and density , 2011, Proceedings of the National Academy of Sciences.

[68]  S. Dumoulin,et al.  The Relationship between Cortical Magnification Factor and Population Receptive Field Size in Human Visual Cortex: Constancies in Cortical Architecture , 2011, The Journal of Neuroscience.

[69]  J. Duhamel,et al.  The relationship between spatial attention and saccades in the frontoparietal network of the monkey , 2011, The European journal of neuroscience.

[70]  Brian A. Wandell,et al.  Plasticity and Stability of the Visual System in Human Achiasma , 2012, Neuron.

[71]  I. Murakami,et al.  Neural Correlates of Induced Motion Perception in the Human Brain , 2012, The Journal of Neuroscience.

[72]  S. Dumoulin,et al.  Modeling center-surround configurations in population receptive fields using fMRI. , 2012, Journal of vision.

[73]  Pooja Viswanathan,et al.  Neuronal correlates of a visual “sense of number” in primate parietal and prefrontal cortices , 2013, Proceedings of the National Academy of Sciences.