Front propagation for discrete periodic monostable equations

This paper deals with front propagation for discrete periodic monostable equations. We show that there is a minimal wave speed such that a pulsating traveling front solution exists if and only if the wave speed is above this minimal speed. Moreover, in comparing with the continuous case, we prove the convergence of discretized minimal wave speeds to the continuous minimal wave speed.

[1]  Shui-Nee Chow,et al.  Traveling Waves in Lattice Dynamical Systems , 1998 .

[2]  Henri Berestycki,et al.  Analysis of the periodically fragmented environment model : I - Influence of periodic heterogeneous environment on species persistence. , 2005 .

[3]  B. Zinner,et al.  Traveling wavefronts for the discrete Fisher's equation , 1993 .

[4]  Henri Berestycki,et al.  Front propagation in periodic excitable media , 2002 .

[5]  Peter Kuchment,et al.  Waves in Periodic and Random Media , 2003 .

[6]  Jack Xin,et al.  Existence of planar flame fronts in convective-diffusive periodic media , 1992 .

[7]  Jack Xin,et al.  Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media , 1993 .

[8]  M. Freidlin Limit Theorems for Large Deviations and Reaction-Diffusion Equations , 1985 .

[9]  James P. Keener,et al.  Propagation and its failure in coupled systems of discrete excitable cells , 1987 .

[10]  Alexander Pankov,et al.  Travelling waves in lattice dynamical systems , 2000 .

[11]  Xinfu Chen,et al.  Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics , 2003 .

[12]  J. Xin Existence of multidimensional traveling waves in the transport of reactive solutes through periodic porous media , 1994 .

[13]  Xinfu Chen,et al.  Existence and Asymptotic Stability of Traveling Waves of Discrete Quasilinear Monostable Equations , 2002 .

[14]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[15]  François Hamel,et al.  The speed of propagation for KPP type problems. I: Periodic framework , 2005 .

[16]  Henri Berestycki,et al.  Analysis of the periodically fragmented environment model : I – Species persistence , 2005, Journal of mathematical biology.

[17]  N. Shigesada,et al.  Biological Invasions: Theory and Practice , 1997 .

[18]  Hans F. Weinberger,et al.  On spreading speeds and traveling waves for growth and migration models in a periodic habitat , 2002, Journal of mathematical biology.

[19]  Bertram Zinner,et al.  EXISTENCE OF TRAVELING WAVES FOR REACTION DIFFUSION EQUATIONS OF FISHER TYPE IN PERIODIC MEDIA , 1995 .

[20]  B. Zinner,et al.  Existence of traveling wavefront solutions for the discrete Nagumo equation , 1992 .

[21]  Henri Berestycki,et al.  Analysis of the periodically fragmented environment model: II—biological invasions and pulsating travelling fronts , 2005 .

[22]  Boundary value problems for functional differential equations , 1995 .

[23]  Jack Xin,et al.  Front Propagation in Heterogeneous Media , 2000, SIAM Rev..

[24]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[25]  X. Xin,et al.  Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity , 1991 .

[26]  N. Shigesada,et al.  Traveling periodic waves in heterogeneous environments , 1986 .