Subwavelength alignment mark signal analysis of advanced memory products

The impact of alignment mark structure, mark geometry, and stepper alignment optical system on mark signal contrast was investigated using computer simulation. Several sub-wavelength poly silicon recessed film stack alignment targets of advanced memory products were studied. Stimulated alignment mark signals for both dark-field and bright-field systems using the rigorous electromagnetic simulation program TEMPEST showed excellent agreement with experimental data. For a dark-field alignment system, the critical parameters affecting signal contrast were found to be mark size and mark recess depth below silicon surface. On the other hand, film stack thickness and mark recess depth below/above silicon surface are the important parameters for a bright-field alignment system. From observed simulation results optimal process parameters are determined. Based on the simulation results some signal enhancement techniques will be discussed.