Chaos Synchronization Based on Unknown Inputs Takagi-Sugeno Fuzzy Observer

This note deals with the chaos synchronization problem using unknown inputs Takagi-Sugeno fuzzy observer. The design of observers for Takagi-Sugeno (T-S) fuzzy models subject to unknown inputs is first considered. Based on Linear Matrix Inequalities (LMI) terms and Lyapunov method, sufficient design conditions are given. The pole placement in an LMI region is also considered to improve the observer performances. The proposed approach can be also used in a chaotic cryptosystem procedure where the plaintext (message) is encrypted using chaotic signals at the drive system side. The resulting ciphertext is embedded to the state of the drive system and is sent via public channel to the response system. The plaintext is retrieved via the designed unknown input observer. An example is given to illustrate the effectiveness of the derived results.

[1]  Lars Nolle,et al.  On Step Width Adaptation in Simulated Annealing for Continuous Parameter Optimisation , 2001, Fuzzy Days.

[2]  J. Ragot,et al.  UNKNOWN INPUT MULTIPLE OBSERVER BASED-APPROACH - APPLICATION TO SECURE COMMUNICATIONS , 2006 .

[3]  Lars Nolle,et al.  Comparison of an self-organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning , 2005, Adv. Eng. Softw..

[4]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Eckehard Schöll,et al.  Handbook of Chaos Control , 2007 .

[6]  Mohammed Chadli,et al.  An LMI approach to design observer for unknown inputs Takagi‐Sugeno fuzzy models , 2010 .

[7]  Ivan Zelinka,et al.  Investigation on evolutionary deterministic chaos control , 2005 .

[8]  Chuandong Li,et al.  Lag synchronization of hyperchaos with application to secure communications , 2005 .

[9]  Roman Senkerik,et al.  Investigation on evolutionary optimization of chaos control , 2009 .

[10]  M. Boutayeb,et al.  Generalized state-space observers for chaotic synchronization and secure communication , 2002 .

[11]  Ivan Zelinka,et al.  Evolutionary Algorithms and Chaotic Systems , 2010, Evolutionary Algorithms and Chaotic Systems.

[12]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[13]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[14]  Kazuo Tanaka,et al.  A multiple Lyapunov function approach to stabilization of fuzzy control systems , 2003, IEEE Trans. Fuzzy Syst..

[15]  Sarah K. Spurgeon,et al.  Sliding mode observers for fault detection and isolation , 2000, Autom..

[16]  Brown,et al.  Modeling and synchronizing chaotic systems from time-series data. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[18]  G. Álvarez,et al.  Breaking parameter modulated chaotic secure communication system , 2003, nlin/0311041.

[19]  Jesus M. Gonzalez-miranda,et al.  Synchronization And Control Of Chaos: An Introduction For Scientists And Engineers , 2004 .

[20]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[21]  J. Ragot,et al.  Stability analysis and design for continuous-time Takagi-Sugeno control systems , 2005 .

[22]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[23]  Karl-Erik Årzén,et al.  Piecewise quadratic stability of fuzzy systems , 1999, IEEE Trans. Fuzzy Syst..

[24]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  L. Xiaodong,et al.  New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI , 2003, Autom..

[26]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[27]  N. Rulkov,et al.  Robustness of Synchronized Chaotic Oscillations , 1997 .

[28]  Kazuo Tanaka,et al.  Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach , 2008 .

[29]  Donghua Zhou,et al.  A new observer-based synchronization scheme for private communication , 2005 .

[30]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .