Variation in Homeodomain DNA Binding Revealed by High-Resolution Analysis of Sequence Preferences

[1]  D. W. Knowles,et al.  Transcription Factors Bind Thousands of Active and Inactive Regions in the Drosophila Blastoderm , 2008, PLoS biology.

[2]  Ole Winther,et al.  JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update , 2007, Nucleic Acids Res..

[3]  Michael A. Crickmore,et al.  Functional Specificity of a Hox Protein Mediated by the Recognition of Minor Groove Structure , 2007, Cell.

[4]  Xiaoyu Chen,et al.  RankMotif++: a motif-search algorithm that accounts for relative ranks of K-mers in binding transcription factors , 2007, ISMB/ECCB.

[5]  Anthony A. Philippakis,et al.  Design of Compact, Universal DNA Microarrays for Protein Binding Microarray Experiments , 2007, RECOMB.

[6]  B. Degnan,et al.  The NK Homeobox Gene Cluster Predates the Origin of Hox Genes , 2007, Current Biology.

[7]  A. Philippakis,et al.  Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities , 2006, Nature Biotechnology.

[8]  Jonathan E. M. Keebler,et al.  A murine specific expansion of the Rhox cluster involved in embryonic stem cell biology is under natural selection , 2006, BMC Genomics.

[9]  T. Svingen,et al.  Hox transcription factors and their elusive mammalian gene targets , 2006, Heredity.

[10]  Ernest Fraenkel,et al.  Core transcriptional regulatory circuitry in human hepatocytes , 2006, Molecular systems biology.

[11]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  E. Olson,et al.  Hand is a direct target of Tinman and GATA factors during Drosophila cardiogenesis and hematopoiesis , 2005, Development.

[13]  Clifford A. Meyer,et al.  Chromosome-Wide Mapping of Estrogen Receptor Binding Reveals Long-Range Regulation Requiring the Forkhead Protein FoxA1 , 2005, Cell.

[14]  S. Elledge,et al.  MAGIC, an in vivo genetic method for the rapid construction of recombinant DNA molecules , 2005, Nature Genetics.

[15]  R. Young,et al.  Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays , 2004, Nature Genetics.

[16]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[17]  A. Liberzon,et al.  Role of intrinsic DNA binding specificity in defining target genes of the mammalian transcription factor PDX1. , 2004, Nucleic acids research.

[18]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): integrating biology with the genome , 2004, Nucleic Acids Res..

[19]  Wyeth W. Wasserman,et al.  JASPAR: an open-access database for eukaryotic transcription factor binding profiles , 2004, Nucleic Acids Res..

[20]  Andreas D. Baxevanis,et al.  The Homeodomain Resource: 2003 update , 2003, Nucleic Acids Res..

[21]  Alexander E. Kel,et al.  TRANSFAC®: transcriptional regulation, from patterns to profiles , 2003, Nucleic Acids Res..

[22]  G. Stormo,et al.  Additivity in protein-DNA interactions: how good an approximation is it? , 2002, Nucleic acids research.

[23]  S. Carroll,et al.  Hox repression of a target gene: extradenticle-independent, additive action through multiple monomer binding sites. , 2002, Development.

[24]  John Aach,et al.  Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Wei Yan,et al.  Obox, a family of homeobox genes preferentially expressed in germ cells. , 2002, Genomics.

[26]  C. Pabo,et al.  Rearrangement of side-chains in a Zif268 mutant highlights the complexities of zinc finger-DNA recognition. , 2001, Journal of molecular biology.

[27]  C. Pabo,et al.  Beyond the "recognition code": structures of two Cys2His2 zinc finger/TATA box complexes. , 2001, Structure.

[28]  Structural basis of Hox specificity , 1999, Nature Structural Biology.

[29]  M. Biggin,et al.  A comparison of in vivo and in vitro DNA‐binding specificities suggests a new model for homeoprotein DNA binding in Drosophila embryos , 1999, The EMBO journal.

[30]  E. Fraenkel,et al.  Engrailed homeodomain-DNA complex at 2.2 A resolution: a detailed view of the interface and comparison with other engrailed structures. , 1998, Journal of molecular biology.

[31]  Sarah E. Ades,et al.  Engrailed (Gln50-->Lys) homeodomain-DNA complex at 1.9 A resolution: structural basis for enhanced affinity and altered specificity. , 1997, Structure.

[32]  G. Tell,et al.  A molecular code dictates sequence‐specific DNA recognition by homeodomains. , 1996, The EMBO journal.

[33]  R. Mann,et al.  Extra specificity from extradenticle: the partnership between HOX and PBX/EXD homeodomain proteins. , 1996, Trends in genetics : TIG.

[34]  C. Wolberger Homeodomain interactions. , 1996, Current opinion in structural biology.

[35]  R J Schwartz,et al.  Identification of Novel DNA Binding Targets and Regulatory Domains of a Murine Tinman Homeodomain Factor, nkx-2.5(*) , 1995, The Journal of Biological Chemistry.

[36]  W. Klein,et al.  Multiple Otx binding sites required for expression of the Strongylocentrotus purpuratus Spec2a gene. , 1994, Developmental biology.

[37]  B. Sun,et al.  The degree of variation in DNA sequence recognition among four Drosophila homeotic proteins. , 1994, The EMBO journal.

[38]  R. Costa,et al.  The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix , 1994, Molecular and cellular biology.

[39]  A Ma,et al.  Binding of myc proteins to canonical and noncanonical DNA sequences , 1993, Molecular and cellular biology.

[40]  W. Gehring,et al.  Functional specificity of the Antennapedia homeodomain. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Mann,et al.  The segment identity functions of Ultrabithorax are contained within its homeo domain and carboxy-terminal sequences. , 1993, Genes & development.

[42]  K. Catron,et al.  Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of three murine homeodomain proteins , 1993, Molecular and Cellular Biology.

[43]  S. Ekker,et al.  Differential DNA sequence recognition is a determinant of specificity in homeotic gene action. , 1992, The EMBO journal.

[44]  Y. Kohwi,et al.  A tissue-specific MAR SAR DNA-binding protein with unusual binding site recognition , 1992, Cell.

[45]  W. McGinnis,et al.  Mapping functional specificity in the Dfd and Ubx homeo domains. , 1992, Genes & development.

[46]  A. Laughon,et al.  DNA binding specificity of homeodomains. , 1991, Biochemistry.

[47]  Carl O. Pabo,et al.  Crystal structure of an engrailed homeodomain-DNA complex at 2.8 Å resolution: A framework for understanding homeodomain-DNA interactions , 1990, Cell.

[48]  Pierre Gönczy,et al.  A single amino acid can determine the DNA binding specificity of homeodomain proteins , 1989, Cell.

[49]  Roger Brent,et al.  DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9 , 1989, Cell.