Large-scale PV system based on the multiphase isolated DC/DC converter

The large-scale photovoltaic (PV) systems have already been reached 200 MW power level and they will continue to grow in size in the upcoming years. This trend will challenge the existing PV system architectures by requiring power converters with a higher power rating and a higher voltage level at the point of common coupling (PCC). The cascaded H-bridge (CHB) multilevel converter is one of the solutions which could deal with the aforementioned challenges. However, the topology based on the CHB converter faces the issue of leakage current that flows through the solar panel parasitic capacitance to ground which could damage the PV panels and pose safety problems. This paper proposes a multiphase isolated DC/DC converter for the CHB topology for a large-scale PV system which eliminates the leakage current issue. At the same time, the multiphase structure of the DC/DC converter helps to increase the power rating of the converter and to reduce the PV voltage and current ripples. A 0.54 MW rated seven-level CHB converter using multiphase isolated DC/DC converters has been modeled and simulated using MATLAB/Simulink and PLECS Blockset. Simulation results of different case studies are presented to evaluate the performance of the proposed PV system configuration.

[1]  Sewan Choi,et al.  Multiphase DC–DC Converters Using a Boost-Half-Bridge Cell for High-Voltage and High-Power Applications , 2011, IEEE Transactions on Power Electronics.

[2]  J. Rodriguez,et al.  Cascaded H-bridge multilevel converter multistring topology for large scale photovoltaic systems , 2011, 2011 IEEE International Symposium on Industrial Electronics.

[3]  Bin Wu,et al.  High-Power Converters and ac Drives: Wu/High-Power Converters and ac Drives , 2006 .

[4]  Staffan Norrga,et al.  Grid integration aspects of large solar PV installations: LVRT capability and reactive power/voltage support requirements , 2011, 2011 IEEE Trondheim PowerTech.

[5]  P.L. Chapman,et al.  Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques , 2007, IEEE Transactions on Energy Conversion.

[6]  P.N. Enjeti,et al.  A parallel-connected single phase power factor correction approach with improved efficiency , 2004, IEEE Transactions on Power Electronics.

[7]  Fernando L. M. Antunes,et al.  Multilevel Inverter Topologies for Stand-Alone PV Systems , 2013, IEEE Transactions on Industrial Electronics.

[8]  Arindam Ghosh,et al.  Renewable energy sources and frequency regulation : survey and new perspectives , 2010 .

[9]  Caisheng Wang,et al.  Analysis of Inductor Current Sharing in Nonisolated and Isolated Multiphase dc–dc Converters , 2007, IEEE Transactions on Industrial Electronics.

[10]  Bin Wu,et al.  High-Power Converters and AC Drives , 2006 .

[11]  Pablo Correa,et al.  Control of a Single-Phase Cascaded H-Bridge Multilevel Inverter for Grid-Connected Photovoltaic Systems , 2009, IEEE Transactions on Industrial Electronics.

[12]  A.R. Beig,et al.  A novel fifteen level inverter for photovoltaic power supply system , 2004, Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting..

[13]  Vassilios G. Agelidis,et al.  Multilevel converters for single-phase grid connected photovoltaic systems-an overview , 1998, IEEE International Symposium on Industrial Electronics. Proceedings. ISIE'98 (Cat. No.98TH8357).

[14]  E. Gubia,et al.  Cascaded H-bridge multilevel converter for grid connected photovoltaic generators with independent maximum power point tracking of each solar array , 2003, IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03..

[15]  Zilong Yang,et al.  Analyzing the key technologies of large-scale application of PV grid-connected systems , 2010, 2010 International Conference on Power System Technology.