Generalized convexity on affine subspaces with an application to potential functions

Second order conditions for the (pseudo-) convexity of a function restricted to an affine subspace are obtained by extending those already known for functions on ℝn. These results are then used to analyse the (pseudo-) convexity of potential functions of the type introduced by Karmarkar.

[1]  Jacques A. Ferland,et al.  MATRIX-THEORETIC CRITERIA FOR THE QUASI-CONVEXITY AND PSEUDO-CONVEXITY OF QUADRATIC FUNCTIONS. , 1972 .

[2]  Siegfried Schaible,et al.  On the convexifiability of pseudoconvex C2-functions , 1980, Math. Program..

[3]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[4]  Jacques A. Ferland,et al.  Mathematical programming problems with quasi-convex objective functions , 1972, Math. Program..

[5]  J. Paquet,et al.  Second Order Conditions for Pseudo-Convex Functions , 1974 .

[6]  Israel Zang,et al.  Nine kinds of quasiconcavity and concavity , 1981 .

[7]  Siegfried Schaible,et al.  Second order characterizations of pseudoconvex functions , 1975, Math. Program..

[8]  Hiroshi Imai,et al.  On the convexity of the multiplicative version of Karmarkar's potential function , 1988, Math. Program..

[9]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[10]  J. Crouzeix,et al.  Definiteness and semidefiniteness of quadratic forms revisited , 1984 .

[11]  K. Arrow,et al.  QUASI-CONCAVE PROGRAMMING , 1961 .

[12]  Jacques A. Ferland,et al.  Criteria for quasi-convexity and pseudo-convexity: Relationships and comparisons , 1982, Math. Program..

[13]  R. Cottle Manifestations of the Schur complement , 1974 .

[14]  G. Debreu Definite and Semidefinite Quadratic Forms , 1952 .

[15]  Jean-Pierre Crouzeix,et al.  On second order conditions for quasiconvexity , 1980, Math. Program..

[16]  J. Ferland Matrix-theoretic criteria for the quasiconvexity of twice continuously differentiable functions , 1981 .