Solution structure of the single-domain prolyl cis/trans isomerase PIN1At from Arabidopsis thaliana.

[1]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[2]  K. Bostian,et al.  Sequence and mutational analysis of ESS1, a gene essential for growth in Saccharomyces cerevisiae , 1989, Yeast.

[3]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[4]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[5]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[6]  F. Richards,et al.  The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. , 1992, Biochemistry.

[7]  J. Hacker,et al.  Confirmation of the existence of a third family among peptidyl‐prolyl cis/trans isomerases Amino acid sequence and recombinant production of parvulin , 1994, FEBS letters.

[8]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[9]  H. Domdey,et al.  PTF1 encodes an essential protein in Saccharomyces cerevisiae, which shows strong homology with a new putative family of PPIases , 1995, FEBS letters.

[10]  R A Sayle,et al.  RASMOL: biomolecular graphics for all. , 1995, Trends in biochemical sciences.

[11]  P. Bork,et al.  Characterization of the Mammalian YAP (Yes-associated Protein) Gene and Its Role in Defining a Novel Protein Module, the WW Domain (*) , 1995, The Journal of Biological Chemistry.

[12]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[13]  T. Hunter,et al.  A human peptidyl–prolyl isomerase essential for regulation of mitosis , 1996, Nature.

[14]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[15]  R. Ranganathan,et al.  Structural and Functional Analysis of the Mitotic Rotamase Pin1 Suggests Substrate Recognition Is Phosphorylation Dependent , 1997, Cell.

[16]  M. Kirschner,et al.  Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. , 1997, Science.

[17]  H. Erickson,et al.  Pervasive conformational fluctuations on microsecond time scales in a fibronectin type III domain , 1998, Nature Structural Biology.

[18]  A. Means,et al.  The mitotic peptidyl‐prolyl isomerase, Pin1, interacts with Cdc25 and Plx1 , 1998, The EMBO journal.

[19]  M. Kirschner,et al.  The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. , 1998, Genes & development.

[20]  K. Lu,et al.  Phosphorylation-dependent prolyl isomerization: a novel signaling regulatory mechanism , 1999, Cellular and Molecular Life Sciences CMLS.

[21]  Xiao Zhen Zhou,et al.  Function of WW domains as phosphoserine- or phosphothreonine-binding modules. , 1999, Science.

[22]  P. Davies,et al.  The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein , 1999, Nature.

[23]  Victoria A. Feher,et al.  Millisecond-timescale motions contribute to the function of the bacterial response regulator protein Spo0F , 1999, Nature.

[24]  T. Uchida,et al.  Identification and characterization of a 14 kDa human protein as a novel parvulin‐like peptidyl prolyl cis/trans isomerase , 1999, FEBS letters.

[25]  D. Inzé,et al.  Letter to the Editor: Sequence-specific 1H, 13C and 15N chemical shift backbone NMR assignment and secondary structure of the Arabidopsis thaliana PIN1At protein , 2000, Journal of biomolecular NMR.

[26]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[27]  G. Fischer,et al.  NMR solution structure of hPar14 reveals similarity to the peptidyl prolyl cis/trans isomerase domain of the mitotic regulator hPin1 but indicates a different functionality of the protein. , 2000, Journal of molecular biology.

[28]  G Fischer,et al.  Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. , 2000, Molecular cell.

[29]  Tony Hunter,et al.  Structural basis for phosphoserine-proline recognition by group IV WW domains , 2000, Nature Structural Biology.

[30]  D. Inzé,et al.  The Arabidopsis thaliana PIN1At Gene Encodes a Single-domain Phosphorylation-dependent Peptidyl Prolylcis/trans Isomerase* , 2000, The Journal of Biological Chemistry.

[31]  T. Kigawa,et al.  Solution structure of the human parvulin-like peptidyl prolyl cis/trans isomerase, hPar14. , 2001, Journal of molecular biology.

[32]  M. Kirschner,et al.  Pin1 acts catalytically to promote a conformational change in Cdc25. , 2001, Molecular cell.

[33]  Masafumi Nakamura,et al.  Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC , 2001, Nature Cell Biology.

[34]  K. Lu,et al.  Functional Replacement of the Essential ESS1 in Yeast by the Plant Parvulin DlPar13* , 2001, The Journal of Biological Chemistry.

[35]  D. Weigel,et al.  Arabidopsis genome: Life without Notch , 2001, Current Biology.

[36]  Tianhua Niu,et al.  Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c‐Jun towards cyclin D1 , 2001, The EMBO journal.

[37]  M. Yaffe,et al.  PhosphoSerine/threonine binding domains: you can't pSERious? , 2001, Structure.

[38]  L. Buée,et al.  1H NMR Study on the Binding of Pin1 Trp-Trp Domain with Phosphothreonine Peptides* , 2001, The Journal of Biological Chemistry.

[39]  J. Pitera,et al.  Assessing the effect of conformational averaging on the measured values of observables , 2001, Journal of biomolecular NMR.

[40]  K. Lu,et al.  Functional Conservation of Phosphorylation-specific Prolyl Isomerases in Plants* , 2001, The Journal of Biological Chemistry.

[41]  Y. Liou,et al.  Pinning down proline-directed phosphorylation signaling. , 2002, Trends in cell biology.