Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform.

It is widely believed, in the areas of optics, image analysis, and visual perception, that the Hilbert transform does not extend naturally and isotropically beyond one dimension. In some areas of image analysis, this belief has restricted the application of the analytic signal concept to multiple dimensions. We show that, contrary to this view, there is a natural, isotropic, and elegant extension. We develop a novel two-dimensional transform in terms of two multiplicative operators: a spiral phase spectral (Fourier) operator and an orientational phase spatial operator. Combining the two operators results in a meaningful two-dimensional quadrature (or Hilbert) transform. The new transform is applied to the problem of closed fringe pattern demodulation in two dimensions, resulting in a direct solution. The new transform has connections with the Riesz transform of classical harmonic analysis. We consider these connections, as well as others such as the propagation of optical phase singularities and the reconstruction of geomagnetic fields.

[1]  Francesco Tricomi Equazioni integrali contenenti il valor principale di un integrale doppio , 1928 .

[2]  A. Zygmund,et al.  Sur les fonctions conjuguées , 1929 .

[3]  Generalizations to Higher Dimensions of the Cauchy Integral Formula , 1932 .

[4]  Dennis Gabor,et al.  Theory of communication , 1946 .

[5]  A. Zygmund,et al.  On the existence of certain singular integrals , 1952 .

[6]  F. Smithies,et al.  Singular Integral Equations , 1955, The Mathematical Gazette.

[7]  A. Zygmund On Singular Integrals , 1956 .

[8]  S. G. Mikhlin,et al.  Multidimensional Singular Integrals and Integral Equations , 1965 .

[9]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[10]  A. Nuttall,et al.  On the quadrature approximation to the Hilbert transform of modulated signals , 1966 .

[11]  Serge Lowenthal,et al.  OBSERVATION OF PHASE OBJECTS BY OPTICALLY PROCESSED HILBERT TRANSFORM , 1967 .

[12]  H. Stark An extension of the Hilbert transform product theorem , 1971 .

[13]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[14]  Misac N. Nabighian,et al.  The analytic signal of two-dimensional magnetic bodies with polygonal cross-section; its properties and use for automated anomaly interpretation , 1972 .

[15]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[16]  A. W. Lohmann,et al.  Isotropic Hilbert spatial filtering , 1973 .

[17]  M. Berry,et al.  Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  C. Vest Holographic Interferometry , 1979 .

[19]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[20]  M. Nabighian Toward a three‐dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations , 1984 .

[21]  K A Nugent,et al.  Interferogram analysis using an accurate fully automatic algorithm. , 1985, Applied optics.

[22]  Fraunhofer diffraction from a circular annular aperture with helical phase factor , 1985 .

[23]  T. G. Voevodkina,et al.  [Holographic interferometry]. , 1985, Laboratornoe delo.

[24]  J Ojeda-Castañeda,et al.  Isotropic Hilbert transform by anisotropic spatial filtering. , 1986, Applied optics.

[25]  D J Bone,et al.  Fringe-pattern analysis using a 2-D Fourier transform. , 1986, Applied optics.

[26]  James R. Fienup,et al.  Phase-retrieval stagnation problems and solutions , 1986 .

[27]  Wooil M. Moon,et al.  Application of 2-D Hilbert transform in geophysical imaging with potential field data , 1988 .

[28]  D. Burr,et al.  Feature detection in human vision: a phase-dependent energy model , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  李幼升,et al.  Ph , 1989 .

[30]  Françoise Peyrin,et al.  The use of a two-dimensional Hilbert transform for Wigner analysis of 2-dimensional real signals , 1990 .

[31]  E. Peli Contrast in complex images. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[32]  Chris Doran,et al.  Imaginary numbers are not real—The geometric algebra of spacetime , 1993 .

[33]  Kieran G. Larkin,et al.  Propagation of errors in different phase-shifting algorithms: a special property of the arctangent function , 1993, Optics & Photonics.

[34]  Mikhail V. Vasnetsov,et al.  Optics of light beams with screw dislocations , 1993 .

[35]  R. Bracewell Two-dimensional imaging , 1994 .

[36]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[37]  K Andresen,et al.  Fringe-orientation maps and fringe skeleton extraction by the two-dimensional derivative-sign binary-fringe method. , 1994, Applied optics.

[38]  W. Hackbusch Singular Integral Equations , 1995 .

[39]  J G Daugman,et al.  Demodulation, predictive coding, and spatial vision. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[40]  Surface Extraction from 3D Images Using Local Energy and Ridge Tracing , 1995 .

[41]  Kieran G. Larkin,et al.  Efficient nonlinear algorithm for envelope detection in white light interferometry , 1996 .

[42]  Pietro Perona,et al.  Scale-Space Properties of Quadratic Feature Detectors , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Arthur E. Barnes,et al.  Theory of 2-D complex seismic trace analysis , 1996 .

[44]  M. Craig,et al.  Analytic signals for multivariate data , 1996 .

[45]  S. Hahn Hilbert Transforms in Signal Processing , 1996 .

[46]  T. Kreis Holographic Interferometry: Principles and Methods , 1996 .

[47]  A W Lohmann,et al.  Optical implementation of the fractional Hilbert transform for two-dimensional objects. , 1997, Applied Optics.

[48]  Alan C. Bovik,et al.  The analytic image , 1997, Proceedings of International Conference on Image Processing.

[49]  Isaac Amidror,et al.  Fourier spectrum of radially periodic images , 1997 .

[50]  Manuel Servin,et al.  Robust quadrature filters , 1997 .

[51]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[52]  D. Malacara,et al.  Interferogram Analysis for Optical Testing , 2018 .

[53]  A. Carbery Harmonic Analysis of The Calderón–Zygmund School, 1970–1993 , 1998 .

[54]  Thomas Bülow,et al.  A Novel Approach to the 2D Analytic Signal , 1999, CAIP.

[55]  Thomas Bülow,et al.  Hypercomplex spectral signal representations for the processing and analysis of images , 1999 .

[56]  R. Müller,et al.  Die Hilberttransformation und ihre Verallgemeinerung in Optik und Bildverarbeitung , 1999 .

[57]  Leon Cohen,et al.  On an ambiguity in the definition of the amplitude and phase of a signal , 1999, Signal Process..

[58]  Michael Felsberg,et al.  The Multidimensional Isotropic Generalization of Quadrature Filters in Geometric Algebra , 2000, AFPAC.

[59]  M R Arnison,et al.  Using the Hilbert transform for 3D visualization of differential interference contrast microscope images , 2000, Journal of microscopy.

[60]  J Campos,et al.  Image processing with the radial Hilbert transform: theory and experiments. , 2000, Optics letters.