X-ray eruptions every 22 days from the nucleus of a nearby galaxy

Galactic nuclei showing recurrent phases of activity and quiescence have recently been discovered, with recurrence times as short as a few hours to a day -- known as quasi-periodic X-ray eruption (QPE) sources -- to as long as hundreds to a thousand days for repeating nuclear transients (RNTs). Here we report the discovery of Swift J023017.0+283603 (hereafter Swift J0230+28), a source that exhibits X-ray quasi-periodic eruptions from the nucleus of a previously unremarkable galaxy at $\sim$ 165 Mpc, with a recurrence time of approximately 22 days, an intermediary timescale between known RNTs and QPE sources. We also report transient radio emission from the source, which is likely associated with the X-ray eruptions. Such recurrent soft X-ray eruptions from a low-mass black hole, with no accompanying UV/optical emission are strikingly similar to QPE sources. However, in addition to having a recurrence time that is $\sim 25$ times longer than the longest-known QPE source, Swift J0230+28's eruptions exhibit slightly distinct shapes and temperature evolution than the known QPE sources. The observed properties disfavor disk instability models, and instead favor scenarios involving extreme mass ratio inspirals. Our discovery reveals a new timescale for repeating extragalactic transients and highlights the need for a wide-field, time-domain X-ray mission, which would enable the exploration of the parameter space of recurring X-ray transients.

[1]  S. Gezari,et al.  A systematic analysis of the X-ray emission in optically selected tidal disruption events: observational evidence for the unification of the optically and X-ray selected populations , 2023, 2308.13019.

[2]  A. King Why Are Quasiperiodic Eruptions Only Found in Low–Mass Galaxies? , 2023, Monthly Notices of the Royal Astronomical Society: Letters.

[3]  Gopal-Krishna,et al.  Precession-induced Variability in AGN Jets and OJ 287 , 2023, The Astrophysical Journal.

[4]  E. Coughlin The dynamics of debris streams from tidal disruption events: Exact solutions, critical stream density, and hydrogen recombination , 2023, Monthly Notices of the Royal Astronomical Society.

[5]  Z. Haiman,et al.  Flares from stars crossing active galactic nuclei disks on low-inclination orbits , 2023, 2304.03670.

[6]  M. Giustini,et al.  Quasi-periodic eruptions from impacts between the secondary and a rigidly precessing accretion disc in an extreme mass-ratio inspiral system , 2023, Astronomy & Astrophysics.

[7]  B. Metzger,et al.  EMRI + TDE = QPE: Periodic X-ray Flares from Star-Disk Collisions in Galactic Nuclei , 2023, 2303.16231.

[8]  A. King Angular momentum transfer in QPEs from galaxy nuclei , 2023, Monthly Notices of the Royal Astronomical Society: Letters.

[9]  S. Smartt,et al.  The Birth of a Relativistic Jet Following the Disruption of a Star by a Cosmological Black Hole , 2022, Nature Astronomy.

[10]  R. Sari,et al.  Unstable Mass Transfer from a Main-sequence Star to a Supermassive Black Hole and Quasiperiodic Eruptions , 2022, The Astrophysical Journal.

[11]  N. Stone,et al.  Magnetically Dominated Disks in Tidal Disruption Events and Quasi-Periodic Eruptions , 2022, Monthly Notices of the Royal Astronomical Society.

[12]  A. Tchekhovskoy,et al.  Radiation Transport Two-temperature GRMHD Simulations of Warped Accretion Disks , 2022, The Astrophysical Journal Letters.

[13]  E. Quataert,et al.  Quasi-periodic eruptions from mildly eccentric unstable mass transfer in galactic nuclei , 2022, Monthly Notices of the Royal Astronomical Society.

[14]  A. Merloni,et al.  Live to Die Another Day: The Rebrightening of AT 2018fyk as a Repeating Partial Tidal Disruption Event , 2022, The Astrophysical Journal Letters.

[15]  J. Krolik,et al.  Quasiperiodic Erupters: A Stellar Mass-transfer Model for the Radiation , 2022, The Astrophysical Journal.

[16]  P. Evans,et al.  A real-time transient detector and the living Swift-XRT point source catalogue , 2022, Monthly Notices of the Royal Astronomical Society.

[17]  A. Merloni,et al.  Deciphering the extreme X-ray variability of the nuclear transient eRASSt J045650.3-203750. A likely repeating partial tidal disruption event , 2022, Astronomy & Astrophysics.

[18]  K. Alexander,et al.  Repeating tidal disruptions in GSN 069: Long-term evolution and constraints on quasi periodic eruptions models , 2022, Astronomy & Astrophysics.

[19]  D. Elbaz,et al.  Compact and Variable Radio Emission from an Active Galaxy with Supersoft X-Ray Emission , 2022, The Astrophysical Journal.

[20]  E. Ramirez-Ruiz,et al.  Tidal Disruption Events from Eccentric Orbits and Lessons Learned from the Noteworthy ASASSN-14ko , 2022, The Astrophysical Journal.

[21]  A. Mahabal,et al.  The Tidal Disruption Event AT2021ehb: Evidence of Relativistic Disk Reflection, and Rapid Evolution of the Disk–Corona System , 2022, The Astrophysical Journal.

[22]  C. Kochanek,et al.  Chandra, HST/STIS, NICER, Swift, and TESS Detail the Flare Evolution of the Repeating Nuclear Transient ASASSN -14ko , 2022, The Astrophysical Journal.

[23]  A. King Quasi-Periodic Eruptions from Galaxy Nuclei , 2022, Monthly Notices of the Royal Astronomical Society.

[24]  M. Gu,et al.  A Disk Instability Model for the Quasi-periodic Eruptions of GSN 069 , 2022, The Astrophysical Journal Letters.

[25]  A. Merloni,et al.  The complex time and energy evolution of quasi-periodic eruptions in eRO-QPE1 , 2022, Astronomy & Astrophysics.

[26]  C. Nixon,et al.  Using the Hills Mechanism to Generate Repeating Partial Tidal Disruption Events and ASASSN-14ko , 2022, The Astrophysical Journal Letters.

[27]  A. Drake,et al.  The Final Season Reimagined: 30 Tidal Disruption Events from the ZTF-I Survey , 2022, The Astrophysical Journal.

[28]  C. Nixon,et al.  Stellar Revival and Repeated Flares in Deeply Plunging Tidal Disruption Events , 2022, The Astrophysical Journal Letters.

[29]  T. Wevers,et al.  Host galaxy properties of quasi-periodically erupting X-ray sources , 2022, Astronomy & Astrophysics.

[30]  C. Nixon,et al.  Stars Crushed by Black Holes. II. A Physical Model of Adiabatic Compression and Shock Formation in Tidal Disruption Events , 2021, The Astrophysical Journal.

[31]  J. Salgado,et al.  HILIGT, upper limit servers I - Overview , 2021, Astron. Comput..

[32]  M. Giustini,et al.  Possible X-Ray Quasi-periodic Eruptions in a Tidal Disruption Event Candidate , 2021, The Astrophysical Journal Letters.

[33]  B. Metzger,et al.  Interacting Stellar EMRIs as Sources of Quasi-periodic Eruptions in Galactic Nuclei , 2021, The Astrophysical Journal.

[34]  E. Flesch The Million Quasars (Milliquas) v7.2 Catalogue, now with VLASS associations. The inclusion of SDSS-DR16Q quasars is detailed , 2021, 2105.12985.

[35]  Z. Arzoumanian,et al.  An Empirical Background Model for the NICER X-Ray Timing Instrument , 2021, The Astronomical Journal.

[36]  Zaven Arzoumanian,et al.  Evidence for a compact object in the aftermath of the extragalactic transient AT2018cow , 2021, Nature Astronomy.

[37]  A. Merloni,et al.  SRG X-ray orbital observatory. Its telescopes and first scientific results , 2021, Astronomy & Astrophysics.

[38]  S. Jha,et al.  The Rapid X-Ray and UV Evolution of ASASSN-14ko , 2021, The Astrophysical Journal.

[39]  J. Comparat,et al.  X-ray quasi-periodic eruptions from two previously quiescent galaxies , 2021, Nature.

[40]  M. Zajaček,et al.  Stellar Transits across a Magnetized Accretion Torus as a Mechanism for Plasmoid Ejection , 2021, 2102.08135.

[41]  A. Mahabal,et al.  Tidal Disruption Event Hosts Are Green and Centrally Concentrated: Signatures of a Post-merger System , 2021, The Astrophysical Journal.

[42]  Z. Arzoumanian,et al.  Rapid Accretion State Transitions following the Tidal Disruption Event AT2018fyk , 2021, The Astrophysical Journal.

[43]  Benjamin D. Johnson,et al.  Stellar Population Inference with Prospector , 2020, The Astrophysical Journal Supplement Series.

[44]  A. Tchekhovskoy,et al.  Magnetohydrodynamics Simulations of Active Galactic Nucleus Disks and Jets , 2020, 2101.08839.

[45]  A. Mahabal,et al.  TDE Hosts are Green and Centrally Concentrated: Signatures of a Post-Merger System , 2020, 2010.10738.

[46]  I. Lapshov,et al.  The eROSITA X-ray telescope on SRG , 2020, Astronomy & Astrophysics.

[47]  J. Prieto,et al.  ASASSN-14ko is a Periodic Nuclear Transient in ESO 253-G003 , 2020, The Astrophysical Journal.

[48]  A. T. Gallego-Calvente,et al.  The Milky Way’s nuclear star cluster: Old, metal-rich, and cuspy , 2020, Astronomy & Astrophysics.

[49]  E. Bon,et al.  Possible mechanism for multiple changing-look phenomena in active galactic nuclei , 2020, Astronomy & Astrophysics.

[50]  K. Auchettl,et al.  X-Ray Properties of TDEs , 2020 .

[51]  B. Metzger,et al.  Variability in Short Gamma-Ray Bursts: Gravitationally Unstable Tidal Tails , 2020, The Astrophysical Journal.

[52]  O. Graur,et al.  The Host Galaxies of Tidal Disruption Events , 2020, Space Science Reviews.

[53]  M. Giustini,et al.  X-ray quasi-periodic eruptions from the galactic nucleus of RX J1301.9+2747 , 2020, Astronomy & Astrophysics.

[54]  C. Nixon,et al.  The Gravitational Instability of Adiabatic Filaments , 2020, The Astrophysical Journal Supplement Series.

[55]  A. King GSN 069 – A tidal disruption near miss , 2020, 2002.00970.

[56]  R. Maiolino,et al.  Universal bolometric corrections for active galactic nuclei over seven luminosity decades , 2020, Astronomy & Astrophysics.

[57]  A. Mahabal,et al.  Seventeen Tidal Disruption Events from the First Half of ZTF Survey Observations: Entering a New Era of Population Studies , 2020, The Astrophysical Journal.

[58]  J. Hameury A review of the disc instability model for dwarf novae, soft X-ray transients and related objects , 2019, 1910.01852.

[59]  K. Alexander,et al.  Nine-hour X-ray quasi-periodic eruptions from a low-mass black hole galactic nucleus , 2019, Nature.

[60]  C. Nixon,et al.  On the Diversity of Fallback Rates from Tidal Disruption Events with Accurate Stellar Structure , 2019, The Astrophysical Journal.

[61]  D. Kasen,et al.  Ultra-deep tidal disruption events: prompt self-intersections and observables , 2019, Monthly Notices of the Royal Astronomical Society.

[62]  K. Maguire,et al.  Evidence for rapid disc formation and reprocessing in the X-ray bright tidal disruption event candidate AT 2018fyk , 2019, Monthly Notices of the Royal Astronomical Society.

[63]  K. Holley-Bockelmann,et al.  Where are the Intermediate Mass Black Holes , 2019, 1903.08144.

[64]  S. Coughlin,et al.  The Fate of Binaries in the Galactic Center: The Mundane and the Exotic , 2019, The Astrophysical Journal.

[65]  Chen Zhang,et al.  Einstein Probe: a lobster-eye telescope for monitoring the x-ray sky , 2018, Astronomical Telescopes + Instrumentation.

[66]  E. Kara,et al.  Ultrafast outflow in tidal disruption event ASASSN-14li , 2017, 1711.06090.

[67]  S. Gezari,et al.  Erratum: Black hole masses of tidal disruption event host galaxies II , 2017, Monthly Notices of the Royal Astronomical Society.

[68]  M. Brotherton,et al.  Updating quasar bolometric luminosity corrections. III. [O III] bolometric corrections , 2017, 1703.03431.

[69]  J. Guillochon,et al.  The fine line between total and partial tidal disruption events , 2017, 1702.07730.

[70]  M. Cappellari Improving the full spectrum fitting method: accurate convolution with Gauss-Hermite functions , 2016, 1607.08538.

[71]  P. Armitage,et al.  On the structure of tidally-disrupted stellar debris streams , 2016, 1603.00873.

[72]  J. Kaastra,et al.  Optimal binning of X-ray spectra and response matrix design , 2016, 1601.05309.

[73]  A. Tchekhovskoy,et al.  Electron Thermodynamics in GRMHD Simulations of Low-Luminosity Black Hole Accretion , 2015, 1509.04717.

[74]  C. Nixon,et al.  VARIABILITY IN TIDAL DISRUPTION EVENTS: GRAVITATIONALLY UNSTABLE STREAMS , 2015, 1506.08194.

[75]  James Guillochon,et al.  A DARK YEAR FOR TIDAL DISRUPTION EVENTS , 2015, 1501.05306.

[76]  A. Eckart,et al.  Dust-enshrouded star near supermassive black hole: predictions for high-eccentricity passages near low-luminosity galactic nuclei , 2014, 1403.5792.

[77]  J. Guillochon,et al.  POSSIBLE ORIGIN OF THE G2 CLOUD FROM THE TIDAL DISRUPTION OF A KNOWN GIANT STAR BY SGR A* , 2014, 1401.2990.

[78]  J. P. Osborne,et al.  1SXPS: A DEEP SWIFT X-RAY TELESCOPE POINT SOURCE CATALOG WITH LIGHT CURVES AND SPECTRA , 2013, 1311.5368.

[79]  C. Matzner,et al.  SHOCK EMERGENCE IN SUPERNOVAE: LIMITING CASES AND ACCURATE APPROXIMATIONS , 2013, 1306.6097.

[80]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies , 2013, 1308.6483.

[81]  A. Loeb,et al.  Consequences of Strong Compression in Tidal Disruption Events , 2012, 1210.3374.

[82]  Daniel J. Price,et al.  TEARING UP THE DISK: HOW BLACK HOLES ACCRETE , 2012, 1209.1393.

[83]  Enrico Ramirez-Ruiz,et al.  HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE , 2012, 1206.2350.

[84]  E. Wright,et al.  MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. I. CHARACTERIZING WISE-SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS , 2012, 1205.0811.

[85]  Chris Nixon,et al.  Broken discs: Warp propagation in accretion discs , 2012, 1201.1297.

[86]  R. Manuputy,et al.  X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope , 2011, 1110.1944.

[87]  E. L. Wright,et al.  NEOWISE OBSERVATIONS OF NEAR-EARTH OBJECTS: PRELIMINARY RESULTS , 2011, 1109.6400.

[88]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[89]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[90]  K. Menou,et al.  White dwarfs stripped by massive black holes: sources of coincident gravitational and electromagnetic radiation , 2010, 1005.3987.

[91]  Luth,et al.  Alternative diagnostic diagrams and the 'forgotten' population of weak line galaxies in the SDSS , 2009, 0912.1643.

[92]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[93]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[94]  S. Mineshige,et al.  Black-Hole Accretion Disks: Towards a New Paradigm , 2008 .

[95]  A. M. Read,et al.  The first XMM-Newton slew survey catalogue: XMMSL1 , 2008, 0801.3732.

[96]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[97]  Jonathan C. McKinney,et al.  WHAM : a WENO-based general relativistic numerical scheme -I. Hydrodynamics , 2007, 0704.2608.

[98]  E. Wright A Cosmology Calculator for the World Wide Web , 2006, astro-ph/0609593.

[99]  L. Kewley,et al.  The host galaxies and classification of active galactic nuclei , 2006, astro-ph/0605681.

[100]  A. Merloni,et al.  On the limit-cycle instability in magnetized accretion discs , 2006, astro-ph/0603159.

[101]  C. Gammie,et al.  Primitive Variable Solvers for Conservative General Relativistic Magnetohydrodynamics , 2005, astro-ph/0512420.

[102]  R. Barlow Asymmetric statistical errors , 2004, physics/0406120.

[103]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[104]  Wm. A. Wheaton,et al.  2MASS All Sky Catalog of point sources. , 2003 .

[105]  Wm. A. Wheaton,et al.  VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) , 2003 .

[106]  Robert Jedicke,et al.  Pan-STARRS: A Large Synoptic Survey Telescope Array , 2002, SPIE Astronomical Telescopes + Instrumentation.

[107]  A. Janiuk,et al.  Radiation Pressure Instability Driven Variability in the Accreting Black Holes , 2002, astro-ph/0205221.

[108]  H. Epps,et al.  ESI, a New Keck Observatory Echellette Spectrograph and Imager , 2002, astro-ph/0204297.

[109]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[110]  P. Prugniel,et al.  A database of high and medium-resolution stellar spectra ?;?? , 2001, astro-ph/0101378.

[111]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[112]  T. Boller,et al.  THE ROSAT ALL-SKY SURVEY BRIGHT SOURCE CATALOGUE , 1996, astro-ph/9909315.

[113]  David Burstein,et al.  Old stellar populations. 5: Absorption feature indices for the complete LICK/IDS sample of stars , 1994 .

[114]  A. Beloborodov,et al.  Angular momentum of a supermassive black hole in a dense star cluster , 1992 .

[115]  D. Burrows,et al.  Determination of Confidence Limits for Experiments with Low Numbers of Counts , 1991 .

[116]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[117]  S. Baliunas,et al.  A Prescription for period analysis of unevenly sampled time series , 1986 .

[118]  G. V. Bicknell,et al.  On tidal detonation of stars by massive black holes , 1983 .

[119]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[120]  Charles H. Townes,et al.  The nature of the central parsec of the Galaxy , 1982 .

[121]  Nikolai I. Shakura,et al.  A Theory of the Instability of disk Accretion on to Black Holes and the Variability of Binary X-ray Sources, Galactic Nuclei and Quasars⋆ , 1976 .

[122]  R. Sunyaev,et al.  Reprint of 1973A&A....24..337S. Black holes in binary systems. Observational appearance. , 1973 .

[123]  A. Janiuk,et al.  Modified models of radiation pressure instability in application to 10 , 10 5 , and 10 7 M accreting black holes , 2022 .

[124]  S. Gezari,et al.  Black hole masses of tidal disruption event host galaxies , 2020 .

[125]  G. Torpier,et al.  Preliminary results , 2007 .

[126]  K. Arnaud XSPEC: The First Ten Years , 1996 .

[127]  Peter Predehl,et al.  X-raying the interstellar medium: ROSAT observations of dust scattering halos , 1995 .

[128]  E. Meyer-Hofmeister,et al.  On the Elusive Cause of Cataclysmic Variable Outbursts , 1981 .

[129]  F P Retief,et al.  [The first ten years]. , 1979, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde.

[130]  J. Bardeen,et al.  The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes , 1975 .

[131]  Douglas M. Eardley,et al.  Black Holes in Binary Systems: Instability of Disk Accretion , 1974 .

[132]  M. Nauenberg,et al.  ANALYTIC APPROXIMATIONS TO THE MASS--RADIUS RELATION AND ENERGY OF ZERO- TEMPERATURE STARS. , 1972 .

[133]  A. Sakurai ON THE PROBLEM OF A SHOCK WAVE ARRIVING AT THE EDGE OF A GAS , 1960 .