Engineering Dissipative Channels for Realizing Schrödinger Cats in SQUIDs

We show that by engineering the interaction with the environment, there exists a large class of systems that can evolve irreversibly to a cat state. To be precise, we show that it is possible to engineer an irreversible process so that the steady state is close to a pure Schrodinger's cat state by using double well systems and an environment comprising two-photon (or phonon) absorbers. We also show that it should be possible to prolong the lifetime of a Schrodinger's cat state exposed to the destructive effects of a conventional single-photon decohering environment. In addition to our general analysis, we present a concrete circuit realization of both system and environment that should be fabricatable with current technologies. Our protocol should make it easier to prepare and maintain Schrodinger cat states, which would be useful in applications of quantum metrology and information processing as well as being of interest to those probing the quantum to classical transition.

[1]  K. McNeil,et al.  A master equation approach to nonlinear optics , 1974 .

[2]  N. Tornau,et al.  Quantum statistics of two-photon absorption , 1974 .

[3]  G. P. Hildred,et al.  Antibunching: more than one kind in two-photon absorption , 1978 .

[4]  H. D. Simaan,et al.  ADDENDUM: Off-diagonal density matrix for single-beam two-photon absorbed light , 1978 .

[5]  K. McNeil,et al.  Non-equilibrium Transitions in Sub/second Harmonic Generation: II. Quantum Theory , 1980 .

[6]  B. Yurke,et al.  Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. , 1986, Physical review letters.

[7]  G. Agarwal,et al.  Time development of squeezing in two photon absorption , 1986 .

[8]  Carmichael,et al.  Quantum noise in the parametric oscillator: From squeezed states to coherent-state superpositions. , 1988, Physical review letters.

[9]  Walls,et al.  Quantum superpositions generated by quantum nondemolition measurements. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[10]  K. Bray,et al.  Putting a stop to surface ignition , 1990 .

[11]  Knight,et al.  Two-photon absorption and nonclassical states of light. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[12]  C. Gerry,et al.  Generation of even and odd coherent states in a competitive two-photon process , 1993 .

[13]  C. Gerry Non-classical Properties of Even and Odd Coherent States , 1993 .

[14]  Milburn,et al.  Quantum tunneling in a Kerr medium with parametric pumping. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[15]  H. Carmichael An open systems approach to quantum optics , 1993 .

[16]  Howard J. Carmichael,et al.  An Open Systems Approach to Quantum Optics: Lectures Presented at the Universite Libre De Bruxelles, October 28 to November 4, 1991 , 1993 .

[17]  M. Wahiddin,et al.  Generation of Even and Odd Coherent States in the Intensity Dependent Jaynes—Cummings Model , 1994 .

[18]  Hach,et al.  Generation of mixtures of Schrödinger-cat states from a competitive two-photon process. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[19]  Knight,et al.  Generation of nonclassical light by dissipative two-photon processes. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[20]  C. Monroe,et al.  A “Schrödinger Cat” Superposition State of an Atom , 1996, Science.

[21]  Noel,et al.  Excitation of an Atomic Electron to a Coherent Superposition of Macroscopically Distinct States. , 1996, Physical review letters.

[22]  E. S. Guerra,et al.  Two-photon parametric pumping versus two-photon absorption: A quantum jump approach , 1997 .

[23]  Gerard J. Milburn,et al.  Controlling the decoherence of a ''meter'' via stroboscopic feedback , 1997 .

[24]  W. Ketterle,et al.  Observation of Interference Between Two Bose Condensates , 1997, Science.

[25]  Tommaso Calarco,et al.  Macroscopic quantum damping in SQUID rings , 1997 .

[26]  Salman Habib,et al.  Decoherence, chaos, and the correspondence principle , 1998 .

[27]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[28]  Deutsch,et al.  Mesoscopic quantum coherence in an optical lattice , 2000, Physical review letters.

[29]  P. Bertet,et al.  Measurement of a negative value for the Wigner function of radiation , 2000 .

[30]  Vijay Patel,et al.  Quantum superposition of distinct macroscopic states , 2000, Nature.

[31]  Jinhyoung Lee,et al.  Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel , 2001, quant-ph/0104090.

[32]  H. Prance,et al.  Fully quantum-mechanical model of a SQUID ring coupled to an electromagnetic field , 2001 .

[33]  H. Prance,et al.  Quantum Statistics and Entanglement of Two Electromagnetic Field Modes Coupled via a Mesoscopic SQUID Ring , 2001 .

[34]  O. Hirota,et al.  Entangled coherent states: Teleportation and decoherence , 2001 .

[35]  M. Scully,et al.  Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations , 2003 .

[36]  Samuel L. Braunstein,et al.  Weak-force detection with superposed coherent states , 2002 .

[37]  J. P. Dahl,et al.  In- and outbound spreading of a free-particle s-wave. , 2002, Physical review letters.

[38]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[39]  H.-G. Meyer,et al.  Low-frequency measurement of the tunneling amplitude in a flux qubit , 2004 .

[40]  Kae Nemoto,et al.  Schrödinger cats and their power for quantum information processing , 2004 .

[41]  H.-G. Meyer,et al.  Radio-frequency method for investigation of quantum properties of superconducting structures , 2004 .

[42]  T. D. Clark,et al.  Superconducting analogs of quantum optical phenomena: Macroscopic quantum superpositions and squeezing in a superconducting quantum-interference device ring , 2003, quant-ph/0307175.

[43]  M. Roukes,et al.  Anharmonic effects on a phonon-number measurement of a quantum-mesoscopic-mechanical oscillator , 2004, quant-ph/0410039.

[44]  J. D. Franson,et al.  Quantum computing using single photons and the Zeno effect , 2004 .

[45]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[46]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[47]  C J Harland,et al.  Quantum Downconversion and Multipartite Entanglement via a Mesoscopic Superconducting Quantum Interference Device Ring , 2005 .

[48]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[49]  R. L. Badzey,et al.  Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance , 2005, Nature.

[50]  M. Wallquist,et al.  Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity , 2006, cond-mat/0608209.

[51]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[52]  Philippe Grangier,et al.  Generation of optical ‘Schrödinger cats’ from photon number states , 2007, Nature.

[53]  S. Deleglise,et al.  Reconstruction of non-classical cavity field states with snapshots of their decoherence , 2008, Nature.

[54]  G. Milburn,et al.  Quantum noise in a nanomechanical Duffing resonator , 2008, 0804.3618.

[55]  C. Oxley Cool for cats , 2008, BMJ : British Medical Journal.

[56]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[57]  E. Solano,et al.  Two-photon probe of the Jaynes-Cummings model and symmetry breaking in circuit QED , 2008, 0805.3294.

[58]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[59]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[60]  Jian-Wei Pan,et al.  Experimental demonstration of a hyper-entangled ten-qubit Schr\ , 2008, 0809.4277.

[61]  W. J. Munro,et al.  Quantum-classical crossover of a field mode , 2007, 0710.1983.

[62]  M. Everitt On the correspondence principle: implications from a study of the nonlinear dynamics of a macroscopic quantum device , 2007, 0712.3043.

[63]  Hideaki Takayanagi,et al.  Two-photon probe of the Jaynes-Cummings model and controlled symmetry breaking in circuit QED , 2009 .

[64]  S. G. Schirmer,et al.  Stabilizing open quantum systems by Markovian reservoir engineering , 2009, 0909.1596.

[65]  C. Deng,et al.  Quantum nondemolition measurement of microwave photons using engineered quadratic interactions , 2010, 1008.3363.

[66]  David P. DiVincenzo,et al.  Exploiting Kerr cross nonlinearity in circuit quantum electrodynamics for nondemolition measurements , 2009, 0906.2979.

[67]  C. P. Sun,et al.  Equivalence condition for the canonical and microcanonical ensembles in coupled spin systems. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  Xiaoting Wang,et al.  Stabilizing Quantum States by Constructive Design of Open Quantum Dynamics , 2010, IEEE Transactions on Automatic Control.

[69]  T B Pittman,et al.  Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor. , 2010, Physical review letters.

[70]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[71]  A. Pechen Engineering arbitrary pure and mixed quantum states , 2011, 1210.2281.

[72]  S. S. Ivanov,et al.  Cooling atom-cavity systems into entangled states , 2011, 1105.5151.

[73]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[74]  Christine A Muschik,et al.  Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. , 2010, Physical review letters.

[75]  Marlan O Scully,et al.  Quantum heat engine power can be increased by noise-induced coherence , 2011, Proceedings of the National Academy of Sciences.

[76]  Lorenza Viola,et al.  Stabilizing entangled states with quasi-local quantum dynamical semigroups , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[77]  B. Sanders Review of entangled coherent states , 2011, 1112.1778.

[78]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[79]  Xin-Yu Chen,et al.  Engineering W-type steady states for three atoms via dissipation in an optical cavity , 2012, 1202.0345.

[80]  Naoki Yamamoto,et al.  Pure Gaussian state generation via dissipation: a quantum stochastic differential equation approach , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[81]  M. Mirrahimi,et al.  Stabilizing a Bell state of two superconducting qubits by dissipation engineering , 2013, 1303.3819.

[82]  A. Voje,et al.  Multi-phonon relaxation and generation of quantum states in a nonlinear mechanical oscillator , 2013, 1302.1707.

[83]  Naoki Yamamoto,et al.  Deterministic generation of Gaussian pure states in a quasilocal dissipative system , 2012, 1211.5788.

[84]  A. Voje,et al.  Nonlinear-dissipation-induced entanglement of coupled nonlinear oscillators , 2013, 1305.6514.

[85]  J. Clausen,et al.  Multiple re-encounter approach to radical pair reactions and the role of nonlinear master equations. , 2013, The Journal of chemical physics.

[86]  A. Lvovsky Squeezed Light , 2014, A Guide to Experiments in Quantum Optics.