Monads of sets

Publisher Summary This chapter focuses on monads of sets—monads in the category S of sets and (total) functions. Monads were first surfaced to codify resolutions for sheaf cohomology. They are established as a standard concept of category theory. Monad research is shaped by applications to functional programming languages. The larger study of monads, in a general category, puts the theory of monads of sets in proper perspective. A balanced account of monads of sets in its current incipient stage, with the hope of stimulating further research is presented. A category-theoretic foundation based on monads for the cohomology of an object in a category is focused. There is a general theory of monadic completion which provides a best monadic approximation for a large class of set-valued functors. There is also an existence theorem to the effect that, under reasonable conditions, every forgetful functor between monadic has a left adjoint.

[1]  Martin Hotzel Escard INJECTIVE SPACES VIA THE FILTER MONAD , 1997 .

[2]  Manfred Broy,et al.  Logic of Programming and Calculi of Discrete Design , 1987, NATO ASI Series.

[3]  S. Eilenberg,et al.  Adjoint functors and triples , 1965 .

[4]  J. Kennison,et al.  Equational completion, model induced triples and pro-objects , 1971 .

[5]  R. Godement,et al.  Topologie algébrique et théorie des faisceaux , 1960 .

[6]  Andrzej Filinski,et al.  Representing monads , 1994, POPL '94.

[7]  J. Duskin Variations on Beck's tripleability criterion , 1969 .

[8]  Z. Ésik,et al.  Iteration Theories: The Equational Logic of Iterative Processes , 1993 .

[9]  Gordon D. Plotkin,et al.  Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..

[10]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[11]  D. K. Harrison,et al.  Proceedings of the Conference on Categorical Algebra , 1966 .

[12]  Eugenio Moggi,et al.  Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[13]  George Gratzer,et al.  Universal Algebra , 1979 .

[14]  John C. Reynolds,et al.  The essence of ALGOL , 1997 .

[15]  Philip Wadler,et al.  Combining Monads , 1992 .

[16]  Richard S. Bird,et al.  An introduction to the theory of lists , 1987 .

[17]  Philip S. Mulry,et al.  Monads in Semantics , 1997, US-Brazil Joint Workshops on the Formal Foundations of Software Systems.

[18]  Haim Gaifman,et al.  Infinite Boolean polynomials I , 1964 .

[19]  Applied functorial semantics, II , 1970 .

[20]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[21]  Joan W Negrepontis Duality in analysis from the point of view of triples , 1971 .

[22]  J. Michael Spivey A Categorial Approch to the Theory of Lists , 1989, MPC.

[23]  P. Freyd,et al.  Algebra valued functors in general and tensor products in particular , 1966 .

[24]  F. E. J. Linton,et al.  An outline of functorial semantics , 1969 .

[25]  Paul Hudak,et al.  Monad transformers and modular interpreters , 1995, POPL '95.

[26]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[27]  H. Kleisli,et al.  Every standard construction is induced by a pair of adjoint functors , 1965 .

[28]  Myles Tierney,et al.  Categories with models , 1969 .

[29]  Edsger W. Dijkstra,et al.  A Discipline of Programming , 1976 .

[30]  F. E. J. Linton,et al.  Coequalizers in categories of algebras , 1969 .

[31]  Alan Day Filter monads, continuous lattices and closure systems , 1975 .

[32]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[33]  R. Paré On absolute colimits , 1971 .

[34]  Hung T. Nguyen,et al.  Uncertainty Models for Knowledge-Based Systems; A Unified Approach to the Measurement of Uncertainty , 1985 .

[35]  Val Tannen,et al.  A Calculus for Collections and Aggregates , 1997, Category Theory and Computer Science.

[36]  Peter J. Huber,et al.  Homotopy theory in general categories , 1961 .

[37]  Philip Wadler,et al.  Comprehending monads , 1990, LISP and Functional Programming.

[38]  Ernest G. Manes,et al.  Implementing collection classes with monads , 1998, Mathematical Structures in Computer Science.

[39]  F. W. Lawvere,et al.  Some algebraic problems in the context of functorial semantics of algebraic theories , 1968 .

[40]  Samuel Eilenberg,et al.  SEMI-SIMPLICIAL COMPLEXES AND SINGULAR HOMOLOGY , 1950 .

[41]  Philip Wadler XQuery: A Typed Functional Language for Querying XML , 2002, Advanced Functional Programming.

[42]  C. A. R. Hoare,et al.  An axiomatic basis for computer programming , 1969, CACM.

[43]  C. Barry Jay,et al.  A Semantics for Shape , 1995, Sci. Comput. Program..

[44]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[45]  Richard S. Bird,et al.  Introduction to functional programming using haskeu , 1998 .

[46]  Simon L. Peyton Jones,et al.  The Implementation of Functional Programming Languages , 1987 .

[47]  The class of topological spaces is equationally definable , 1973 .

[48]  Philip S. Mulry Monads and Algebras in the Semantics or Partial Data Types , 1992, Theor. Comput. Sci..

[49]  J. Isbell General Functorial Semantics, I , 1972 .

[50]  A. Kock Monads for which Structures are Adjoint to Units , 1995 .

[51]  F. E. J. Linton,et al.  Relative functorial semantics: Adjointness results , 1969 .

[52]  Vaughan R. Pratt,et al.  SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC , 1976, FOCS 1976.

[53]  M. H. Rogers Proceedings of the symposium on computers and automata: Edited by Jerome Fox, John Wiley, Chichester, UK, (1972), £9.85 , 1973 .

[54]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[55]  M. Lane Homologie des anneaux et des modules , 1979 .

[56]  Philip Wadler,et al.  The essence of functional programming , 1992, POPL '92.

[57]  F. E. J. Linton,et al.  Some Aspects of Equational Categories , 1966 .

[58]  Paul Hudak The Haskell School of Expression: Learning Functional Programming through Multimedia , 1999 .

[59]  Oswald Wyler Algebraic theories of continuous lattices , 1981 .

[60]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[61]  On Fundamental Constructions and Adjoint Functors , 1966, Canadian Mathematical Bulletin.

[62]  Mark P. Jones,et al.  Functional Programming with Overloading and Higher-Order Polymorphism , 1995, Advanced Functional Programming.

[63]  Guy L. Steele,et al.  Building interpreters by composing monads , 1994, POPL '94.

[64]  J. Słomiński,et al.  The theory of abstract algebras with infinitary operations , 1959 .

[65]  Law Fw FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963 .

[66]  J. R. Isbell,et al.  Subobjects, adequacy, completeness and categories of algebras , 1964 .

[67]  S. Maclane,et al.  General theory of natural equivalences , 1945 .

[68]  Ernest G. Manes,et al.  Taut Monads and T0-spaces , 2002, Theor. Comput. Sci..

[69]  J. Benabou Introduction to bicategories , 1967 .

[70]  R. Solovay New proof of a theorem of Gaifman and Hales , 1966 .

[71]  Andrew M. Pitts,et al.  Category Theory and Computer Science , 1987, Lecture Notes in Computer Science.

[72]  Simon L. Peyton Jones,et al.  Imperative functional programming , 1993, POPL '93.

[73]  Eugenio Moggi A Semantics for Evaluation Logic , 1995, Fundam. Informaticae.

[74]  Dexter Kozen,et al.  A Representation Theorem for Models of *-Free PDL , 1980, ICALP.

[75]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935 .

[76]  C. C. Elgot,et al.  Calvin C. Elgot selected papers , 1982 .

[77]  Johan Jeuring,et al.  Merging Monads and Folds for Functional Programming , 1995, Advanced Functional Programming.

[78]  Ernest G. Manes Predicate transformer semantics , 1992, Cambridge tracts in theoretical computer science.

[79]  Edsger W. Dijkstra,et al.  Predicate Calculus and Program Semantics , 1989, Texts and Monographs in Computer Science.

[80]  E. Manes A class of fuzzy theories , 1982 .

[81]  J. Michael Spivey,et al.  A Functional Theory of Exceptions , 1990, Sci. Comput. Program..

[82]  Maarten M. Fokkinga Monadic Maps and Folds for Arbitrary Datatypes , 1994 .

[83]  E. Manes,et al.  A triple theoretic construction of compact algebras , 1969 .

[84]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[85]  J. Beck,et al.  TRIPLES, ALGEBRAS AND COHOMOLOGY , 1967 .

[86]  A. Hales,et al.  On the non-existence of free complete Boolean algebras , 1964 .

[87]  J. Isbell Functorial implicit operations , 1973 .

[88]  Philip Wadler Monads for Functional Programming , 1995, Advanced Functional Programming.

[89]  Peter Gabriel,et al.  Calculus of Fractions and Homotopy Theory , 1967 .

[90]  R. Pierce Introduction to the Theory of Abstract Algebras , 1968 .