Ga(ClO4)3-catalyzed synthesis of quinoxalines by cycloaddition of α-hydroxyketones and o-phenylenediamines

[1]  V. Mamedov,et al.  New and modified classical methods for the synthesis of quinoxalines , 2010 .

[2]  H. Meshram,et al.  A mild and convenient synthesis of quinoxalines via cyclization–oxidation process using DABCO as catalyst , 2010 .

[3]  M. Lv,et al.  The combinatorial synthesis of bioactive quinoxalines, quinoxalinones and quinoxalinols. , 2010, Combinatorial chemistry & high throughput screening.

[4]  K. R. Rao,et al.  Biomimetic synthesis of quinoxalines in water , 2009 .

[5]  Jie‐Ping Wan,et al.  Water mediated chemoselective synthesis of 1,2-disubstituted benzimidazoles using o-phenylenediamine and the extended synthesis of quinoxalines , 2009 .

[6]  P. S. Prasad,et al.  Iron exchanged molybdophosphoric acid as an efficient heterogeneous catalyst for the synthesis of quinoxalines , 2009 .

[7]  Wei Zhang,et al.  Gallium(III) triflate-catalyzed synthesis of quinoxaline derivatives , 2008 .

[8]  Wei Zhang,et al.  Ga(OTf)3-promoted condensation reactions for 1,5-benzodiazepines and 1,5-benzothiazepines , 2008 .

[9]  Rui Wang,et al.  Montmorillonite K-10: An efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water , 2008 .

[10]  C. Cho,et al.  Copper-catalyzed oxidative cyclization of α-hydroxyketones with o-phenylenediamines leading to quinoxalines , 2007 .

[11]  P. Gogoi,et al.  Efficient and Green Method for the Synthesis of 1,5‐Benzodiazepine and Quinoxaline Derivatives in Water , 2007 .

[12]  B. Das,et al.  An efficient and convenient protocol for the synthesis of quinoxalines and dihydropyrazines via cyclization–oxidation processes using HClO4·SiO2 as a heterogeneous recyclable catalyst ☆ , 2007 .

[13]  S. Palaniappan,et al.  Efficient, convenient and reusable polyaniline-sulfate salt catalyst for the synthesis of quinoxaline derivatives , 2007 .

[14]  H. R. Darabi,et al.  A RECYCLABLE AND HIGHLY EFFECTIVE SULFAMIC ACID/MEOH CATALYTIC SYSTEM FOR THE SYNTHESIS OF QUINOXALINES AT ROOM TEMPERATURE , 2007 .

[15]  M. Heravi,et al.  On Water: A practical and efficient synthesis of quinoxaline derivatives catalyzed by CuSO4 · 5H2O , 2007 .

[16]  C. Yao,et al.  Cerium (IV) ammonium nitrate (CAN) as a catalyst in tap water: A simple, proficient and green approach for the synthesis of quinoxalines , 2006 .

[17]  R. Bhosale,et al.  An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst , 2005 .

[18]  C. Yao,et al.  Molecular iodine: a powerful catalyst for the easy and efficient synthesis of quinoxalines , 2005 .

[19]  K. Park,et al.  Manganese(IV) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation. , 2005, Chemical communications.

[20]  C. D. Wilfred,et al.  Tandem oxidation processes for the preparation of nitrogen-containing heteroaromatic and heterocyclic compounds. , 2004, Organic & biomolecular chemistry.

[21]  C. D. Wilfred,et al.  Preparation of quinoxalines, dihydropyrazines, pyrazines and piperazines using tandem oxidation processes. , 2003, Chemical communications.

[22]  R. Reynolds,et al.  Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. , 2002, Journal of medicinal chemistry.

[23]  S. Antoniotti,et al.  Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1,2-diamines , 2002 .

[24]  I. Sage,et al.  Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications , 2001 .

[25]  R. G. Browne,et al.  4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. , 1990, Journal of medicinal chemistry.