Atmospheric corrections in the thermal infrared: global and water vapor dependent split-window algorithms-applications to ATSR and AVHRR data

The split-window method is an appropriate way to perform atmospheric corrections of satellite brightness temperatures in order to retrieve the surface temperature. A climatological data set of 1761 different radio soundings, the TIGR database, has been used to develop two different split-window methods. A global quadratic (QUAD) method, with global coefficients to be applied on a worldwide scale, and a water vapor dependent (WVD) algorithm. The first method includes a quadratic term in the split-window equation that roughly accounts for the water vapor amount. The other method explicitly includes the water vapor amount in each split-window coefficient. When applied to the 1761 radio soundings, the latter method gives better results than the global one, especially when the surface emissivity is far from unity (0.95 or less) and when the water vapor reaches great values. Both algorithms have been tested on ATSR/ERSI and AVHRR/NOAA data over sea pixels. The QUAD algorithm gives correct results for simulations (the standard error is 0.2 K) and experimental data (the bias ranges from -0.1 to 0.4 K). The WVD algorithm appears to be more accurate for both simulations (the standard error is less than 0.1 K) and AVHRR experimental data when climatological water vapor contents are used (the bias ranges from -0.2 to 0.1 K).

[1]  Gary J. Jedlovec,et al.  Precipitable water estimation from high-resolution split window radiance measurements , 1990 .

[2]  M. Derrien,et al.  Automatic cloud detection applied to NOAA-11 /AVHRR imagery , 1993 .

[3]  Roger Saunders,et al.  Water‐Vapour Continuum Absorption In the Tropics: Aircraft Measurements and Model Comparisons , 1992 .

[4]  Larry M. McMillin,et al.  Estimation of sea surface temperatures from two infrared window measurements with different absorption , 1975 .

[5]  J. C. Price,et al.  Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer , 1984 .

[6]  José A. Sobrino,et al.  Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5 , 1991 .

[7]  F. X. Kneizys,et al.  Users Guide to LOWTRAN 7 , 1988 .

[8]  Sid-Ahmed Boukabara,et al.  The microwave radiometer aboard ERS-1. II. Validation of the geophysical products , 1996, IEEE Trans. Geosci. Remote. Sens..

[9]  A. Prata Land surface temperatures derived from the advanced very high resolution radiometer and the along‐track scanning radiometer: 1. Theory , 1993 .

[10]  Z. Li,et al.  Feasibility of land surface temperature and emissivity determination from AVHRR data , 1993 .

[11]  A. Chedin,et al.  The Improved Initialization Inversion Method: A High Resolution Physical Method for Temperature Retrievals from Satellites of the TIROS-N Series. , 1985 .

[12]  T. Phulpin,et al.  Atmospheric correction of infrared measurements of sea surface temperature using channels at 3.7, 11 and 12 Μm , 1980 .

[13]  Z. Li,et al.  Towards a local split window method over land surfaces , 1990 .

[14]  I. J. Barton,et al.  Validation of the ATSR in Australian Waters , 1995 .

[15]  D. Vidal-Madjar,et al.  Estimation of Land Surface Temperature with NOAA9 Data , 1992 .

[16]  Zhao-Liang Li,et al.  Improvements in the split-window technique for land surface temperature determination , 1994, IEEE Trans. Geosci. Remote. Sens..

[17]  Peter J. Minnett,et al.  The regional optimization of infrared measurements of sea surface temperature from space , 1990 .

[18]  P. Le Borgne,et al.  Errors at large satellite zenith angles on AVHRR derived sea surface temperatures , 1992 .

[19]  K. Masuda,et al.  Emissivity of pure and sea waters for the model sea surface in the infrared window regions , 1988 .

[20]  José A. Sobrino,et al.  On the atmospheric dependence of the split-window equation for land surface temperature , 1994 .

[21]  C. Walton,et al.  Nonlinear Multichannel Algorithms for Estimating Sea Surface Temperature with AVHRR Satellite Data , 1988 .

[22]  Catherine Ottlé,et al.  Estimation of the angular variation of the sea surface emissivity with the ATSR/ERS-1 data , 1994 .

[23]  R. Kauth,et al.  Estimation of Sea Surface Temperature from Space , 1970 .

[24]  A. Viola,et al.  Sea surface temperature from AVHRR-2 data , 1985 .

[25]  A. Chedin,et al.  A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas , 1981 .

[26]  Larry M. McMillin,et al.  Retrieval of Precipitable Water from Observations in the Split Window over Varying Surface Temperatures , 1990 .

[27]  Zhao-Liang Li,et al.  Impact of the atmospheric transmittance and total water vapor content in the algorithms for estimating satellite sea surface temperatures , 1993, IEEE Trans. Geosci. Remote. Sens..

[28]  Veronique Achard Trois problemes cles de l'analyse 3d de la structure thermo-dynamique de l'atmosphere par satellite : mesure du contenu en ozone; classification des masses d'air; modelisation hyper rapide du transfert radiatif , 1991 .

[29]  Z. Li,et al.  Temperature-independent spectral indices in thermal infrared bands , 1990 .

[30]  Andrew Harris,et al.  An extension to the split-window technique giving improved atmospheric correction and total water vapour , 1992 .

[31]  G. Dalu Satellite remote sensing of atmospheric water vapour , 1986 .

[32]  Darrell E. Burch,et al.  Continuum Absorption By Atmospheric H2O , 1981, Other Conferences.

[33]  I. J. Barton,et al.  A non-regression-coefficients method of sea surface temperature retrieval from space , 1994 .

[34]  C. Prabhakara,et al.  Estimation of sea surface temperature from remote sensing in the 11‐ to 13‐μm window region , 1974 .

[35]  Carlo Ulivieri,et al.  A split window algorithm for estimating land surface temperature from satellites , 1994 .