The Wegener-Bergeron-Findeisen process - Its discovery and vital importance for weather and climate
暂无分享,去创建一个
[1] S. Arrhenius. “On the Infl uence of Carbonic Acid in the Air upon the Temperature of the Ground” (1896) , 2017, The Future of Nature.
[2] T. Storelvmo,et al. Spaceborne lidar observations of the ice‐nucleating potential of dust, polluted dust, and smoke aerosols in mixed‐phase clouds , 2014 .
[3] Steven Dobbie,et al. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds , 2013, Nature.
[4] Corinna Hoose,et al. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments , 2012 .
[5] B. Murray,et al. Ice nucleation by particles immersed in supercooled cloud droplets. , 2012, Chemical Society reviews.
[6] Mark D. Zelinka,et al. Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth , 2012 .
[7] U. Lohmann,et al. Sensitivity studies of different aerosol indirect effects in mixed-phase clouds , 2009 .
[8] D. Winker,et al. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .
[9] U. Lohmann,et al. Inadvertent climate modification due to anthropogenic lead , 2009 .
[10] David R. Doelling,et al. Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .
[11] A. Kirkevåg,et al. Modeling of the Wegener–Bergeron–Findeisen process—implications for aerosol indirect effects , 2008 .
[12] U. Lohmann,et al. The Zurich Ice Nucleation Chamber (ZINC)-A New Instrument to Investigate Atmospheric Ice Formation , 2008 .
[13] A. Korolev. Limitations of the Wegener–Bergeron–Findeisen Mechanism in the Evolution of Mixed-Phase Clouds , 2007 .
[14] A. Korolev,et al. Relative Humidity in Liquid, Mixed-Phase, and Ice Clouds , 2006 .
[15] Judith A. Curry,et al. A new double-moment microphysics parameterization for application in cloud and climate models. Part II: Single-column modeling of arctic clouds , 2005 .
[16] A. Nenes,et al. A Continuous-Flow Streamwise Thermal-Gradient CCN Chamber for Atmospheric Measurements , 2005 .
[17] Alexei Korolev,et al. Supersaturation of Water Vapor in Clouds , 2003 .
[18] Ka-Ming Lau,et al. Warm rain processes over tropical oceans and climate implications , 2003 .
[19] M. Kanamitsu,et al. NCEP–DOE AMIP-II Reanalysis (R-2) , 2002 .
[20] L. Rotstayn. A physically based scheme for the treatment of stratiform clouds and precipitation in large‐scale models. I: Description and evaluation of the microphysical processes , 1997 .
[21] D. Rogers. Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies , 1988 .
[22] J. Klett,et al. Microphysics of Clouds and Precipitation , 1978, Nature.
[23] R. Smith. A scheme for predicting layer clouds and their water content in a general circulation model , 1990 .
[24] J. Podzimek. Die Ergebnisse der Ersten Kondensationsversuche in der Unterdruckapparatur , 1957 .
[25] H. Köhler. The nucleus in and the growth of hygroscopic droplets , 1936 .
[26] Erik Björkdal,et al. Über die dreidimensional verknüpfende Wetteranalyse , 1928 .
[27] G. Magnus,et al. Versuche über die Spannkräfte des Wasserdampfs , 1844 .